Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulating proliferation during retinal development

Key Points

  • The control of the cell cycle is vital in determining the size of an organism and the size and cellular makeup of its individual organs. The vertebrate retina is a valuable model for studying cell-cycle regulation, because retinal progenitor cells generate a variety of cell types in a highly stereotypical manner, requiring precise coordination of cell proliferation and cell-cycle exit.

  • Cell proliferation during development of the central nervous system (CNS) is regulated by a combination of intrinsic and extrinsic factors. Early during development, extrinsic factors signal progenitor cells to upregulate genes that drive cell cycle progression, or to downregulate genes that encourage cell-cycle exit. Later, the emphasis is shifted towards promoting cell-cycle exit or decreasing the production of mitosis-promoting factors.

  • After M phase, progenitor cells decide either to undergo a further round of proliferation or to terminally differentiate. In cells that continue to proliferate, the retinoblastoma (Rb) protein or a related family member becomes phosphorylated by a cyclin–cyclin-dependent kinase complex. This phosphorylation step is blocked if the cell decides to exit the cell cycle.

  • Cyclin-kinase inhibitors (CKIs) have diverse roles in the CNS. p27Xic1, a Xenopus protein that belongs to the Cip/Kip family, regulates proliferation, Müller glia cell-fate specification and possibly bipolar fate specification, whereas the rodent equivalent p27Kip1 primarily regulates cell-cycle exit. Like p27Xic1, the rodent p57Kip2 has a dual role, regulating both cell-cycle exit and specification of amacrine cells in the postnatal retina.

  • Retinal progenitor cells are heterogeneous in their expression of components of the cell-cycle machinery (for example, p27Kip1 versus p57Kip2, or cyclin D1 versus cyclin D3). This could reflect intrinsic differences between progenitor cells, or extracellular cues might instruct them to exit the cell cycle at different times.

  • In the rodent retina, cell-cycle exit is a two-step process: cyclin D1 is downregulated, then one of the CKIs is upregulated. Cyclin D1 knockout mice show reduced retinal progenitor cell proliferation, whereas p27Kip1- or p57Kip2-deficient mice show extra cell division in the retina. In mice deficient for both cyclin D1 and p27Kip1, the retina develops normally.

  • Progenitor cells possess mechanisms to compensate for perturbations in the cell-cycle machinery; for example, the effects of the cyclin D1 knockout are partially counteracted by the upregulation of cyclin D3. By contrast, there is no known mechanism to compensate for mutations in Rb.

  • Apoptosis can also compensate for the deregulation of proliferation; for example, in CKI knockout mice, increased apoptosis is seen in the inner neuroblastic layer of the retina.

  • During stress or injury, glial cells in the adult CNS can be induced to divide. After retinal injury, p27Kip1 is downregulated and Müller glia re-enter the cell cycle. To prevent uncontrolled proliferation, they downregulate cyclin D3 and upregulate glial fibrillary acidic protein. In p27Kip1-deficient mice, Müller glia initiate reactive gliosis during the final stages of retinal development, leading to retinal dysplasia. Knocking out p27Kip1 produces the same changes in protein levels as injury, indicating that p27Kip1 downregulation is critical to regulate Müller cell proliferation.

Abstract

Recent studies have shown that components of the cell-cycle machinery can have diverse and unexpected roles in the retina. Cyclin-kinase inhibitors, for example, have been implicated as regulators of cell-fate decisions during histogenesis and reactive gliosis in the adult tissue after injury. Also, various mechanisms have been identified that can compensate for extra rounds of cell division when the normal timing of the cell-cycle exit is perturbed. Surprisingly, distinct components of the cell-cycle machinery seem to be used during different stages of development, and different organisms might rely on distinct pathways. Such detailed studies on the regulation of proliferation in complex multicellular tissues during development have not only advanced our knowledge of the ways in which proliferation is controlled, but might also help us to understand the degenerative disorders that are associated with gliosis and some types of tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Families of related proteins regulate cell-cycle progression during G1.
Figure 2: p27Kip1 and p57Kip2 are upregulated during different phases of the cell cycle in distinct retinal progenitor-cell populations.
Figure 3: The cyclin D1−/− mouse retina shows a unique form of retinal degeneration.
Figure 4: p57Kip2 is important for amacrine sub-population development.
Figure 5: Apoptosis compensates for deregulated proliferation in cyclin-kinase-inhibitor-deficient retinae.
Figure 6: p27Kip1 regulates cell-cycle exit in Müller glial cells after retinal injury.

Similar content being viewed by others

References

  1. Masui, Y. & Markert, C. L. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177, 129–145 ( 1971).

    CAS  PubMed  Google Scholar 

  2. Smith, L. D. & Ecker, R. E. The interaction of steroids with Rana pipiens oocytes in the induction of maturation. Dev. Biol. 25, 232–247 ( 1971).

    CAS  PubMed  Google Scholar 

  3. Lohka, M. J., Hayes, M. K. & Maller, J. L. Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc. Natl Acad. Sci. USA 85, 3009–3013 (1988).

    CAS  PubMed  Google Scholar 

  4. Lee, M. G. & Nurse, P. Cell cycle genes of the fission yeast . Sci. Prog. 71, 1–14 (1987).

    CAS  PubMed  Google Scholar 

  5. Dunphy, W. G., Brizuela, L., Beach, D. & Newport, J. The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis . Cell 54, 423–431 (1988).

    CAS  PubMed  Google Scholar 

  6. Hunt, T. Maturation promoting factor, cyclin and the control of M-phase. Curr. Opin. Cell Biol. 1, 268–274 ( 1989).

    CAS  PubMed  Google Scholar 

  7. Meijer, L. & Guerrier, P. Maturation and fertilization in starfish oocytes. Int. Rev. Cytol. 86, 129 –196 (1984).

    CAS  PubMed  Google Scholar 

  8. Lee, M. G. & Nurse, P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327, 31–35 ( 1987).Highlights one of the most compelling examples of the evolutionarily conserved action of a cell-cycle protein.

    CAS  PubMed  Google Scholar 

  9. Tannoch, V. J., Hinds, P. W. & Tsai, L. H. Cell cycle control. Adv. Exp. Med. Biol. 465, 127–140 ( 2000).

    CAS  PubMed  Google Scholar 

  10. Gitig, D. M. & Koff, A. Cdk pathway: cyclin-dependent kinases and cyclin-dependent kinase inhibitors. Methods Mol. Biol. 142, 109–123 ( 2000).

    CAS  PubMed  Google Scholar 

  11. Zhu, L. & Skoultchi, A. I. Coordinating cell proliferation and differentiation. Curr Opin Genet Dev 11, 91–97 (2001).

    CAS  PubMed  Google Scholar 

  12. Livesey, F. J. & Cepko, C. L. Vertebrate neural cell fate determination: lessons from the retina. Nature Rev. Neurosci. 2, 109–118 ( 2001).

    CAS  Google Scholar 

  13. Cepko, C. L., Golden, J. A., Szele, F. G. & Lin, J. in Molecular and Cellular Approaches to Neural Development (eds Cowan, W. M., Zipursky, S. L. & Jessell, T. M.) (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  14. Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995). Data on the size of brain components and the order of neurogenesis was compiled from over 130 species to generate a nonlinear function that can be used to predict the outcome of changes in the rate or duration of neurogenesis on brain structure.

    CAS  PubMed  Google Scholar 

  15. Reichenbach, A. et al. The Müller (glial) cell in normal and diseased retina: a case for single-cell electrophysiology. Ophthalmic. Res. 29, 326–340 (1997).

    CAS  PubMed  Google Scholar 

  16. Ide, C. F. et al. Cellular and molecular correlates to plasticity during recovery from injury in the developing mammalian brain. Prog. Brain Res. 108, 365–377 ( 1996).

    CAS  PubMed  Google Scholar 

  17. Ridet, J. L., Malhotra, S. K., Privat, A. & Gage, F. H. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20, 570–577 (1997); erratum 21, 80 (1998). PubMed

    CAS  PubMed  Google Scholar 

  18. Sahel, J. A., Albert, D. M. & Lessell, S. Proliferation of retinal glia and excitatory amino acids . Ophtalmologie 4, 13–16 (1990).

    CAS  PubMed  Google Scholar 

  19. Bringmann, A. et al. Role of glial K(+) channels in ontogeny and gliosis: a hypothesis based upon studies on Müller cells. Glia 29, 35–44 (2000).

    CAS  PubMed  Google Scholar 

  20. Dyer, M. A. & Cepko, C. L. Control of Müller glial cell proliferation and activation following retinal injury. Nature Neurosci. 3, 873–880 ( 2000).p27Kip1 was found to be a key regulator of Müller glial-cell proliferation during reactive gliosis.

    CAS  PubMed  Google Scholar 

  21. Prados, M. D. & Levin, V. Biology and treatment of malignant glioma. Semin. Oncol. 27, 1– 10 (2000).

    CAS  PubMed  Google Scholar 

  22. Humphrey, M. F., Constable, I. J., Chu, Y. & Wiffen, S. A quantitative study of the lateral spread of Müller cell responses to retinal lesions in the rabbit. J. Comp. Neurol. 334 , 545–558 (1993).

    CAS  PubMed  Google Scholar 

  23. Ohnuma, S., Philpott, A., Wang, K., Holt, C. E. & Harris, W. A. p27Xic1, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina. Cell 99, 499–510 ( 1999).The first example of a role for a vertebrate cyclin-kinase inhibitor in cell-fate specification.

    CAS  PubMed  Google Scholar 

  24. Levine, E. M., Close, J., Fero, M., Ostrovsky, A. & Reh, T. A. p27Kip1 regulates cell cycle withdrawal of late multipotent progenitor cells in the mammalian retina. Dev. Biol. 219, 299–314 (2000).

    CAS  PubMed  Google Scholar 

  25. Dyer, M. A. & Cepko, C. L. p57Kip2 regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development 127, 3593– 3605 (2000).

    CAS  PubMed  Google Scholar 

  26. Dyer, M. A. & Cepko, C. L. The p57Kip2 cyclin kinase inhibitor is expressed by a restricted set of amacrine cells in the rodent retina. J. Comp. Neurol. 429, 601 –614 (2001).

    CAS  PubMed  Google Scholar 

  27. Dyer, M. A. & Cepko, C. L. p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations . J. Neurosci. (in the press).The first evidence that retinal progenitor cells might use different mechanisms to exit the cell cycle during development.

  28. Kroll, K. L., Salic, A. N., Evans, L. M. & Kirschner, M. W. Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development 125, 3247–3258 (1998).

    CAS  PubMed  Google Scholar 

  29. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770– 776 (1999).

    CAS  PubMed  Google Scholar 

  30. Baker, N. E. Notch signaling in the nervous system. Pieces still missing from the puzzle . Bioessays 22, 264–273 (2000).

    CAS  PubMed  Google Scholar 

  31. Dubois-Dalcq, M. & Murray, K. Why are growth factors important in oligodendrocyte physiology? Pathol. Biol. (Paris) 48, 80–86 ( 2000).

    CAS  Google Scholar 

  32. Wechsler-Reya, R. J. & Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 ( 1999).

    CAS  PubMed  Google Scholar 

  33. Ahlgren, S. C. & Bronner-Fraser, M. Inhibition of sonic hedgehog signaling in vivo results in craniofacial neural crest cell death. Curr. Biol. 9, 1304– 1314 (1999).

    CAS  PubMed  Google Scholar 

  34. Jensen, A. M. & Wallace, V. A. Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 124, 363– 371 (1997).

    CAS  PubMed  Google Scholar 

  35. Lu, N. & DiCicco-Bloom, E. Pituitary adenylate cyclase-activating polypeptide is an autocrine inhibitor of mitosis in cultured cortical precursor cells. Proc. Natl Acad. Sci. USA 94, 3357 –3362 (1997).

    CAS  PubMed  Google Scholar 

  36. Dicicco-Bloom, E., Lu, N., Pintar, J. E. & Zhang, J. The PACAP ligand/receptor system regulates cerebral cortical neurogenesis. Ann. NY Acad. Sci. 865, 274–289 ( 1998).

    CAS  PubMed  Google Scholar 

  37. Lindholm, D., Skoglosa, Y. & Takei, N. Developmental regulation of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor 1 in rat brain: function of PACAP as a neurotrophic factor. Ann. NY Acad. Sci. 865, 189–196 (1998).

    CAS  PubMed  Google Scholar 

  38. Mehler, M. F. & Gokhan, S. Postnatal cerebral cortical multipotent progenitors: regulatory mechanisms and potential role in the development of novel neural regenerative strategies. Brain Pathol. 9, 515–526 (1999).

    CAS  PubMed  Google Scholar 

  39. Dreyfus, H. et al. Gangliosides and neurotrophic growth factors in the retina. Molecular interactions and applications as neuroprotective agents. Ann. NY Acad. Sci. 845, 240–252 (1998).

    CAS  PubMed  Google Scholar 

  40. Dominguez, M., Wasserman, J. D. & Freeman, M. Multiple functions of the EGF receptor in Drosophila eye development. Curr. Biol. 8, 1039 –1048 (1998).

    CAS  PubMed  Google Scholar 

  41. Ilia, M. & Jeffery, G. Retinal cell addition and rod production depend on early stages of ocular melanin synthesis. J. Comp. Neurol. 420, 437–444 ( 2000).

    CAS  PubMed  Google Scholar 

  42. Jeffery, G. The retinal pigment epithelium as a developmental regulator of the neural retina. Eye 12, 499–503 (1998).

    PubMed  Google Scholar 

  43. Mehler, M. F., Mabie, P. C., Zhu, G., Gokhan, S. & Kessler, J. A. Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev. Neurosci. 22, 74– 85 (2000).

    CAS  PubMed  Google Scholar 

  44. Helm, G. A., Alden, T. D., Sheehan, J. P. & Kallmes, D. Bone morphogenetic proteins and bone morphogenetic protein gene therapy in neurological surgery: a review. Neurosurgery 46, 1213–1222 (2000).

    CAS  PubMed  Google Scholar 

  45. Harland, R. Neural induction. Curr. Opin. Genet. Dev. 10, 357–362 (2000).

    CAS  PubMed  Google Scholar 

  46. Ebendal, T., Bengtsson, H. & Soderstrom, S. Bone morphogenetic proteins and their receptors: potential functions in the brain. J. Neurosci. Res. 51, 139–146 (1998).

    CAS  PubMed  Google Scholar 

  47. Patapoutian, A. & Reichardt, L. F. Roles of Wnt proteins in neural development and maintenance. Curr. Opin. Neurobiol. 10, 392–399 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Smalley, M. J. & Dale, T. C. Wnt signalling in mammalian development and cancer. Cancer Metastasis Rev. 18, 215–230 (1999).

    CAS  PubMed  Google Scholar 

  49. Anlar, B., Sullivan, K. A. & Feldman, E. L. Insulin-like growth factor-I and central nervous system development. Horm. Metab. Res. 31, 120–125 (1999).

    CAS  PubMed  Google Scholar 

  50. Lillien, L. & Cepko, C. Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGF alpha. Development 115, 253–266 ( 1992).

    CAS  PubMed  Google Scholar 

  51. Rowe, J. M. & Liesveld, J. L. Hematopoietic growth factors and acute leukemia. Cancer Treat. Res. 99, 195–226 (1999).

    CAS  PubMed  Google Scholar 

  52. Crawford, J., Foote, M. & Morstyn, G. Hematopoietic growth factors in cancer chemotherapy . Cancer Chemother. Biol. Response Modif. 18, 250–267 (1999).

    CAS  PubMed  Google Scholar 

  53. Marsh, J. C. Results of immunosuppression in aplastic anaemia. Acta Haematol. 103, 26–32 ( 2000).

    CAS  PubMed  Google Scholar 

  54. Bass, J., Oldham, J., Sharma, M. & Kambadur, R. Growth factors controlling muscle development. Domest. Anim. Endocrinol. 17, 191–197 (1999).

    CAS  PubMed  Google Scholar 

  55. Gomer, R. H. & Ammann, R. R. A cell-cycle phase-associated cell-type choice mechanism monitors the cell cycle rather than using an independent timer. Dev. Biol. 174, 82– 91 (1996).One of the best-characterized examples of the cell-cycle phase-dependent response to developmental cues.

    CAS  PubMed  Google Scholar 

  56. McConnell, S. K. & Kaznowski, C. E. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 ( 1991).A series of transplantation experiments are described in the developing neocortex that demonstrate a correlation between cell-cycle phase and the ability to respond to developmental cues.

    CAS  PubMed  Google Scholar 

  57. Belliveau, M. J. & Cepko, C. L. Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. Development 126, 555– 566 (1999).Shows that the competence of retinal progenitor cells to respond to the extrinsic cues that regulate amacrine-cell fate specification might be cell-cycle-phase restricted.

    CAS  PubMed  Google Scholar 

  58. Sherr, C. J. Cancer cell cycles. Science 274, 1672– 1677 (1996).

    CAS  Google Scholar 

  59. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    CAS  PubMed  Google Scholar 

  60. Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261– 291 (1997).

    CAS  PubMed  Google Scholar 

  61. Vidal, A. & Koff, A. Cell-cycle inhibitors: three families united by a common cause. Gene 247, 1– 15 (2000).

    CAS  PubMed  Google Scholar 

  62. Durand, B. & Raff, M. A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays 22, 64–71 (2000).

    CAS  PubMed  Google Scholar 

  63. Durand, B., Gao, F. B. & Raff, M. Accumulation of the cyclin-dependent kinase inhibitor p27Kip1 and the timing of oligodendrocyte differentiation. EMBO J. 16, 306–317 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Young, R. W. Cell differentiation in the retina of the mouse. Anat Rec, 212, 199–205 (1985).

    CAS  PubMed  Google Scholar 

  65. Sicinski, P. et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82, 621– 630 (1995).

    CAS  PubMed  Google Scholar 

  66. Ma, C., Papermaster, D. & Cepko, C. L. A unique pattern of photoreceptor degeneration in cyclin D1 mutant mice. Proc. Natl Acad. Sci. USA 95 , 9938–9943 (1998).

    CAS  PubMed  Google Scholar 

  67. Geng, Y. et al. Deletion of the p27Kip1 gene restores normal development in cyclin D1-deficient mice. Proc. Natl Acad. Sci. USA 98, 194–199 (2001).

    CAS  PubMed  Google Scholar 

  68. Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice . Cell 85, 733–744 (1996).

    CAS  PubMed  Google Scholar 

  69. Zhang, P. et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387, 151–158 ( 1997).Several developmental defects observed in the p57-deficient mice could not be explained as the result of proliferation defects. This led to the proposal that cyclin-kinase inhibitors might be directly involved in cell-fate specification and/or differentiation.

    CAS  PubMed  Google Scholar 

  70. Tong, W. & Pollard, J. W. Genetic evidence for the interactions of cyclin D1 and p27Kip1 in mice. Mol. Cell Biol. 21, 1319–1328 ( 2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. O'Connor, L., Huang, D. C., O'Reilly, L. A. & Strasser, A. Apoptosis and cell division. Curr. Opin. Cell Biol. 12, 257–263 (2000).

    CAS  PubMed  Google Scholar 

  72. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    CAS  PubMed  Google Scholar 

  73. Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288– 294 (1992).References 72 and 73 describe the phenotype of Rb-deficient mice and serve as one of the most dramatic examples of species-specific use of cell-cycle components. Human Rb+/− retinae develop retinoblastoma, whereas mouse Rb+/− retinae do not.

    CAS  PubMed  Google Scholar 

  74. Maandag, E. C. et al. Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J. 13, 4260–4268 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. DiCiommo, D., Gallie, B. L. & Bremner, R. Retinoblastoma: the disease, gene and protein provide critical leads to understand cancer. Semin. Cancer Biol. 10, 255–269 (2000).

    CAS  PubMed  Google Scholar 

  76. Robanus-Maandag, E. et al. p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev. 12, 1599– 1609 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dowling, J. E. The Retina — An Approachable Part of the Brain (Harvard Univ. Press, Cambridge, Massachusetts, 1987).

    Google Scholar 

  78. Masland, R. H. The functional architecture of the retina. Sci. Am. 255, 102–111 (1986).

    CAS  PubMed  Google Scholar 

  79. Jeon, C. J., Strettoi, E. & Masland, R. H. The major cell populations of the mouse retina. J. Neurosci. 18, 8936–8946 (1998).

    CAS  PubMed  Google Scholar 

  80. Nork, T. M., Ghobrial, M. W., Peyman, G. A. & Tso, M. O. Massive retinal gliosis. A reactive proliferation of Müller cells. Arch. Ophthalmol. 104, 1383–1389 (1986).

    CAS  PubMed  Google Scholar 

  81. Norton, W. T., Aquino, D. A., Hozumi, I., Chiu, F. C. & Brosnan, C. F. Quantitative aspects of reactive gliosis: a review. Neurochem. Res. 17, 877 –885 (1992).

    CAS  PubMed  Google Scholar 

  82. Alexander, F. Neuroblastoma. Urol. Clin. North Am. 27, 383–392 (2000).

    CAS  PubMed  Google Scholar 

  83. Weiss, W. A. Genetics of brain tumors. Curr. Opin. Pediatr. 12, 543–548 (2000).

    CAS  PubMed  Google Scholar 

  84. DeAngelis, L. M. Brain tumors. N. Engl. J. Med. 344, 114– 123 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Margaret H. Baron for continued support, Brenda L. Gallie and Rod Bremner for sharing pre-publication results, and Seo-Hee Cho for critical reading of the manuscript. Research support was from the National Eye Institute. A grant from the NRSA grant and the Charles H. Revson fellowship for biomedical research supported M.A.D.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

EGF

FGF

Rb

p27Kip1

cyclin D1

p57Kip2

cyclin D3

p19

p107

GFAP

ENCYCLOPEDIA OF LIFE SCIENCES

Visual system development in vertebrates

Cell cycle: regulation by cyclins

Glossary

DYSPLASIA

Premalignant change characterized by alteration in size, shape and organization of the cellular elements of a tissue.

MÜLLER GLIA

The main glial cell type present in the retina.

BROMODEOXYURIDINE

Thymidine analogue that incorporates into the DNA of dividing cells.

RETROVIRUS

Virus composed of single-stranded RNA enclosed by a protein capsid and surrounded by a lipid envelope.

CALBINDIN

Calcium-binding protein that might function as a calcium buffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyer, M., Cepko, C. Regulating proliferation during retinal development. Nat Rev Neurosci 2, 333–342 (2001). https://doi.org/10.1038/35072555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35072555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing