Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors

Abstract

Many voltage-dependent K+ channels open when the membrane is depolarized and then rapidly close by a process called inactivation. Neurons use inactivating K+ channels to modulate their firing frequency. In Shaker-type K+ channels, the inactivation gate, which is responsible for the closing of the channel, is formed by the channel's cytoplasmic amino terminus. Here we show that the central cavity and inner pore of the K+ channel form the receptor site for both the inactivation gate and small-molecule inhibitors. We propose that inactivation occurs by a sequential reaction in which the gate binds initially to the cytoplasmic channel surface and then enters the pore as an extended peptide. This mechanism accounts for the functional properties of K+ channel inactivation and indicates that the cavity may be the site of action for certain drugs that alter cation channel function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biophysical features of K+ channel inactivation.
Figure 2: Mutational analysis of the inactivation gate–receptor interaction.
Figure 3: TBA binds in the cavity of the KcsA K+ channel.
Figure 4: A structural model for the mechanism of inactivation.

Similar content being viewed by others

References

  1. Hoshi,T., Zagotta, W. N. & Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).

    Article  ADS  Google Scholar 

  2. Zagotta, W. N., Hoshi, T. & Aldrich, R. W. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250, 568–571 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Rettig, J. et al. Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature 369, 289–294 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Murrell-Langnado, R. D. & Aldrich, R. W. Interactions of amino terminal domains of Shaker K channels with a pore blocking site studied with synthetic peptides. J. Gen. Physiol. 102, 949–975 (1993).

    Article  Google Scholar 

  5. Murrell-Langnado, R. D. & Aldrich, R. W. Energetics of Shaker K channels block by inactivation peptides. J. Gen. Physiol. 102, 977–1003 (1993).

    Article  Google Scholar 

  6. Zagotta, W. N. & Aldrich, R. W. Voltage-dependent gating of Shaker A-type potassium channel in Drosophila muscle. J. Gen. Physiol. 95, 29–60 (1990).

    Article  CAS  Google Scholar 

  7. MacKinnon, R., Aldrich, R. W. & Lee, A. W. Functional stoichiometry of Shaker potassium channel inactivation. Science 262, 757–759 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Gomez-Lagunas, F. & Armstrong, C. M. Inactivation in ShakerB K+ channels: a test for the number of inactivating particles on each channel. Biophys. J. 68, 89–95 (1995).

    Article  CAS  Google Scholar 

  9. Demo, S. D. & Yellen, G. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron 7, 743–753 (1991).

    Article  CAS  Google Scholar 

  10. Armstrong, C. M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58, 413–437 (1971).

    Article  CAS  Google Scholar 

  11. Choi, K. L., Aldrich, R. W. & Yellen, G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc. Natl Acad. Sci. USA 88, 5092–2095 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Isacoff, E. Y., Jan, Y. N. & Jan, L. Y. Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel. Nature 353, 86–90 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Antz, C. et al. NMR structure of inactivation gates from mammalian voltage-dependent potassium channels. Nature 385, 272–275 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Schott, M. K., Antz, C., Frank, R., Ruppersberg, J. P. & Kalbitzer, H. R. Structure of the inactivating gate from the Shaker voltage gated K+ channel analyzed by NMR spectroscopy. Eur. Biophys. J. 27, 99–104 (1998).

    Article  CAS  Google Scholar 

  15. Antz, C. & Fakler, B. Fast inactivation of voltage-gated K+ channels: From cartoon to structure. News Physiol. Sci. (Bethesda) 13, 177–182 (1998).

    CAS  Google Scholar 

  16. Gulbis, J. M., Zhou, M., Mann, S. & MacKinnon, R. Structure of the cytoplasmic β subunit-T1 assembly of voltage-dependent K+ channels. Science 289, 123–127 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Kobertz, W. R., Williams, C. & Miller, C. Hanging gondola structure of the T1 domain in a voltage-gated K+channel. Biochemistry 39, 10347–10352 (2000).

    Article  CAS  Google Scholar 

  18. Sokolova, O., Kolmakova-Partensky, L. & Grigorieff, N. Three-dimensional structure of a voltage-gated potassium channel at 2.5 nm resolution. Structure 9, 215–220 (2001).

    Article  CAS  Google Scholar 

  19. Heinemann, S. H., Rettig, J., Graack, H. R. & Pongs, O. Functional characterization of Kv channel beta-subunits from rat brain. J. Physiol. (Lond.) 493, 625–633 (1996).

    Article  CAS  Google Scholar 

  20. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Armstrong, C. M. & Hille, B. The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. J. Gen. Physiol. 59, 388–400 (1972).

    Article  CAS  Google Scholar 

  22. Yarov-Yarovoy, V. et al. Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na+ channel alpha subunit. J. Biol. Chem. 276, 20–27 (2001).

    Article  CAS  Google Scholar 

  23. Mitcheson, J. S., Chen, J., Lin, M., Culberson, C. & Sanguinetti, M. C. A structural basis for drug-induced long QT syndrome. Proc. Natl Acad. Sci. USA 97, 12329–12333 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Lu, Z. & MacKinnon, R. A conductance maximum observed in an inward-rectifier potassium channel. J. Gen. Physiol. 104, 477–486 (1994).

    Article  CAS  Google Scholar 

  25. Otwinowski, Z. in Proceedings of the CCP4 Study Weekend (SERC Daresbury Laboratory, Daresbury, UK, 1993).

    Google Scholar 

  26. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  27. Rasmusson, R. L. et al. C-type inactivation controls recovery in a fast inactivation cardiac K+channel (Kv1.4) expressed in Xenopus oocytes. J. Physiol. (Lond.) 489, 709–721 (1995).

    Article  CAS  Google Scholar 

  28. MacKinnon, R. & Yellen, G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 250, 276–279 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Hidalgo, P. & MacKinnon, R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science 268, 307–310 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  31. Merritt, E. A. & Bacon, D. J. Raster3D: Photorealistic molecular gaphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the European Synchrotron Radiation Facility (ESRF) and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (with support by the U.S. D.O.E., Division of Material Sciences and Division of Chemical Sciences). We thank C. Petosa and A. Perrakis for help on ESRF ID-13, and M. Becker for help on NSLS X-25. The project was supported by an NIH grant to R.M. R.M. is an investigator in the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick MacKinnon.

Additional information

Coordinates have been deposited with the Protein Data Bank under accession code 1J95.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Morais-Cabral, J., Mann, S. et al. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411, 657–661 (2001). https://doi.org/10.1038/35079500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing