Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Stem cell plasticity — building the brain of our dreams

Abstract

Many recent studies indicate that adult-derived stem cells are much more plastic than was previously thought, and that they can cross lineage boundaries and produce progeny of widely diverse types. This would increase the number of routes available for generating new cells for tissue repair, and would make patient-donated autografts more feasible. Beyond the attention-grabbing headlines that have appeared in the press, scientists working in the stem cell field have to evaluate critically the evidence that adult stem cells can make other cell types, using traditional techniques combined with new technologies for determining cell fates. Focusing on the nervous system, the evidence that adult neural stem cells are highly plastic, and that other types of adult non-neural stem cells can generate neural progeny, is reviewed. The aim is to provide a balanced view of the evidence and to highlight some important experiments that should be done before we can conclude that adult stem cells are potent enough to replace the wealth of neural cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examining the neuropotency of stem cells.
Figure 2: Blastocyst chimaeras made with adult neural stem cells.
Figure 3: Can non-neural stem cells generate neurons?

Similar content being viewed by others

References

  1. Slack, J. M. W. From Egg to Embryo (Cambridge Univ. Press, Cambridge, UK, 1985).

    Google Scholar 

  2. Morrison, S. J., Shah, N. M. & Anderson, D. J. Regulatory mechanisms in stem cell biology. Cell 88, 287–298 (1997).

    Article  CAS  Google Scholar 

  3. Shen, Q., Qian, X., Capela, A. & Temple, S. Stem cells in the embryonic cerebral cortex: their role in histogenesis and patterning. J. Neurobiol. 36, 162–174 (1998).

    Article  CAS  Google Scholar 

  4. Kuhn, H. G. & Svendsen, C. N. Origins, functions, and potential of adult neural stem cells. Bioessays 21, 625–630 (1999).

    Article  CAS  Google Scholar 

  5. Rao, M. S. Multipotent and restricted precursors in the central nervous system. Anat. Rec. 257, 137–148 (1999).

    Article  CAS  Google Scholar 

  6. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  7. Alvarez-Buylla, A., Garcia-Verdugo, J. M. & Tramontin, A. D. A unified hypothesis on the lineage of neural stem cells. Nature Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  Google Scholar 

  8. Anderson, D. J. Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30, 19–35 (2001).

    Article  CAS  Google Scholar 

  9. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530 (1998).

    Article  CAS  Google Scholar 

  10. Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394 (1999).

    CAS  Google Scholar 

  11. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C. & Vescovi, A. L. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534–537 (1999).

    Article  CAS  Google Scholar 

  12. Petersen, B. E. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170 (1999).

    Article  CAS  Google Scholar 

  13. Lagasse, E. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med. 6, 1229–1234 (2000).

    Article  CAS  Google Scholar 

  14. Morrison, S. J. Stem cell potential: can anything make anything? Curr. Biol. 11, R7–9 (2001).

    Article  CAS  Google Scholar 

  15. Goldowitz, D. Cell allocation in mammalian CNS formation: evidence from murine interspecies aggregation chimeras. Neuron 3, 705–713 (1989).

    Article  CAS  Google Scholar 

  16. Crandall, J. E. & Herrup, K. Patterns of cell lineage in the cerebral cortex reveal evidence for developmental boundaries. Exp. Neurol. 109, 131–139 (1990).

    Article  CAS  Google Scholar 

  17. Tan, S. S. et al. Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21, 295–304 (1998).

    Article  CAS  Google Scholar 

  18. Brustle, O. et al. In vitro-generated neural precursors participate in mammalian brain development. Proc. Natl Acad. Sci. USA 94, 14809–14814 (1997).

    Article  CAS  Google Scholar 

  19. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  Google Scholar 

  20. Liu, S. et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl Acad. Sci. USA 97, 6126–6131 (2000).

    Article  CAS  Google Scholar 

  21. Brustle, O. et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

    Article  CAS  Google Scholar 

  22. McDonald, J. W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Med. 5, 1410–1412 (1999).

    Article  CAS  Google Scholar 

  23. Kawaguchi, A. et al. Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol. Cell. Neurosci. 17, 259–273 (2001).

    Article  CAS  Google Scholar 

  24. Capela, A. & Temple, S. A putative surface marker for adult mouse neural stem cells. Soc. Neurosci. Abstr. 26, 56 (2000).

    Google Scholar 

  25. Gaiano, N. & Fishell, G. Transplantation as a tool to study progenitors within the vertebrate nervous system. J. Neurobiol. 36, 152–161 (1998).

    Article  CAS  Google Scholar 

  26. LaBonne, C. & Bronner-Fraser, M. Induction and patterning of the neural crest, a stem cell-like precursor population. J. Neurobiol. 36, 175–189 (1998).

    Article  CAS  Google Scholar 

  27. Campbell, K. & Olsson, M. Novel mechanisms in mammalian telencephalic development as revealed by neural transplantation. Prog. Brain Res. 127, 99–113 (2000).

    Article  CAS  Google Scholar 

  28. Alvarado-Mallart, R. M. The chick/quail transplantation model to study central nervous system development. Prog. Brain Res. 127, 67–98 (2000).

    Article  CAS  Google Scholar 

  29. Alvarez-Buylla, A., Herrera, D. G. & Wichterle, H. The subventricular zone: source of neuronal precursors for brain repair. Prog. Brain Res. 127, 1–11 (2000).

    Article  CAS  Google Scholar 

  30. Svendsen, C. N. & Caldwell, M. A. Neural stem cells in the developing central nervous system: implications for cell therapy through transplantation. Prog. Brain Res. 127, 13–34 (2000).

    Article  CAS  Google Scholar 

  31. Fishell, G. Striatal precursors adopt cortical identities in response to local cues. Development 121, 803–812 (1995).

    CAS  Google Scholar 

  32. Brustle, O., Maskos, U. & McKay, R. D. Host-guided migration allows targeted introduction of neurons into the embryonic brain. Neuron 15, 1275–1285 (1995).

    Article  CAS  Google Scholar 

  33. Olsson, M., Campbell, K. & Turnbull, D. H. Specification of mouse telencephalic and mid-hindbrain progenitors following heterotopic ultrasound-guided embryonic transplantation. Neuron 19, 761–772 (1997).

    Article  CAS  Google Scholar 

  34. Barbe, M. F. & Levitt, P. The early commitment of fetal neurons to the limbic cortex. J. Neurosci. 11, 519–533 (1991).

    Article  CAS  Google Scholar 

  35. Frantz, G. D. & McConnell, S. K. Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron 17, 55–61 (1996).

    Article  CAS  Google Scholar 

  36. Desai, A. R. & McConnell, S. K. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127, 2863–2872 (2000).

    CAS  Google Scholar 

  37. Dunnett, S. B., Nathwani, F. & Bjorklund, A. The integration and function of striatal grafts. Prog. Brain Res. 127, 345–380 (2000).

    Article  CAS  Google Scholar 

  38. Winkler, C. et al. Incorporation and glial differentiation of mouse EGF-responsive neural progenitor cells after transplantation into the embryonic rat brain. Mol. Cell. Neurosci. 11, 99–116 (1998).

    Article  CAS  Google Scholar 

  39. Galli, R. et al. Skeletal myogenic potential of human and mouse neural stem cells. Nature Neurosci. 3, 986–991 (2000).

    Article  CAS  Google Scholar 

  40. Morshead, C. M., Tropepe, V., Iscove, N. & Van der Kooy, D. The potential role of neural stem cell transformation in turning brain into blood in irradiated recipients. Soc. Neurosci. Abstr. 26, 827 (2000).

  41. Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

    Article  CAS  Google Scholar 

  42. Beddington, R. S. & Robertson, E. J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733–737 (1989).

    CAS  Google Scholar 

  43. Nagy, A. et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821 (1990).

    CAS  Google Scholar 

  44. Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001).

    Article  CAS  Google Scholar 

  45. Wei, G., Schubiger, G., Harder, F. & Muller, A. M. Stem cell plasticity in mammals and transdetermination in Drosophila: common themes? Stem Cells 18, 409–414 (2000).

    Article  CAS  Google Scholar 

  46. Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000).

    Article  CAS  Google Scholar 

  47. Anderson, D. J., Gage, F. H. & Weissman, I. L. Can stem cells cross lineage boundaries? Nature Med. 7, 393–395 (2001).

    Article  CAS  Google Scholar 

  48. Bjorklund, A. & Svendsen, C. N. Chimeric stem cells. Trends Mol. Med. 7, 144–146 (2001).

    Article  CAS  Google Scholar 

  49. Lim, D. A., Fishell, G. J. & Alvarez-Buylla, A. Postnatal mouse subventricular zone neuronal precursors can migrate and differentiate within multiple levels of the developing neuraxis. Proc. Natl Acad. Sci. USA 94, 14832–14836 (1997).

    Article  CAS  Google Scholar 

  50. Suhonen, J. O., Peterson, D. A., Ray, J. & Gage, F. H. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383, 624–627 (1996).

    Article  CAS  Google Scholar 

  51. Nishida, A. et al. Incorporation and differentiation of hippocampus-derived neural stem cells transplanted in injured adult rat retina. Invest. Ophthalmol. Vis. Sci. 41, 4268–4274 (2000).

    CAS  Google Scholar 

  52. Young, M. J., Ray, J., Whiteley, S. J., Klassen, H. & Gage, F. H. Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol. Cell. Neurosci. 16, 197–205 (2000).

    Article  CAS  Google Scholar 

  53. Shihabuddin, L. S., Horner, P. J., Ray, J. & Gage, F. H. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 20, 8727–8735 (2000).

    Article  CAS  Google Scholar 

  54. Fricker, R. A. et al. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19, 5990–6005 (1999).

    Article  CAS  Google Scholar 

  55. Durbec, P. & Rougon, G. Transplantation of mammalian olfactory progenitors into chick hosts reveals migration and differentiation potentials dependent on cell commitment. Mol. Cell. Neurosci. 17, 561–576 (2001).

    Article  CAS  Google Scholar 

  56. Woodbury, D., Schwarz, E. J., Prockop, D. J. & Black, I. B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364–370 (2000).

    Article  CAS  Google Scholar 

  57. Sanchez-Ramos, J. et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164, 247–256 (2000).

    Article  CAS  Google Scholar 

  58. Deng, W., Obrocka, M., Fischer, I. & Prockop, D. J. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem. Biophys. Res. Commun. 282, 148–152 (2001).

    Article  CAS  Google Scholar 

  59. Eglitis, M. A. & Mezey, E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl Acad. Sci. USA 94, 4080–4085 (1997).

    Article  CAS  Google Scholar 

  60. Kopen, G. C., Prockop, D. J. & Phinney, D. G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl Acad. Sci. USA 96, 10711–10716 (1999).

    Article  CAS  Google Scholar 

  61. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A. & McKercher, S. R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 (2000).

    Article  CAS  Google Scholar 

  62. Brazelton, T. R., Rossi, F. M., Keshet, G. I. & Blau, H. M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779 (2000).

    Article  CAS  Google Scholar 

  63. Herrera, D. G., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Adult-derived neural precursors transplanted into multiple regions in the adult brain. Ann. Neurol. 46, 867–877 (1999).

    Article  CAS  Google Scholar 

  64. Whittemore, S. R. & Onifer, S. M. Immortalized neural cell lines for CNS transplantation. Prog. Brain Res. 127, 49–65 (2000).

    Article  CAS  Google Scholar 

  65. Smith, P. M. & Blakemore, W. F. Porcine neural progenitors require commitment to the oligodendrocyte lineage prior to transplantation in order to achieve significant remyelination of demyelinated lesions in the adult CNS. Eur. J. Neurosci. 12, 2414–2424 (2000).

    Article  CAS  Google Scholar 

  66. Wolpert, L., Beddington, R., Brockes, J., Jessell, T., Lawrence, P. A. & Meyerowitz, E. Principles of Development (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  67. Smith, A. D. (ed.) Oxford Dictionary of Biochemistry and Molecular Biology (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  68. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez–Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

My sincere thanks to K. Kirchofer and Q. Shen for their invaluable help in preparing this manuscript, and to H. Blau, F. Doetsch, G. Fishell, E. Mezey, S.-S. Tan and S. Whittemore for generously providing images and insight.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

opsin

islet-1

islet-2

NeuN

GFAP

neurofilament

PU.1

neuron-specific enolase

TUJ1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temple, S. Stem cell plasticity — building the brain of our dreams. Nat Rev Neurosci 2, 513–520 (2001). https://doi.org/10.1038/35081577

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35081577

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing