Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of thrombin signalling in platelets in haemostasis and thrombosis

Abstract

Platelets are critical in haemostasis and in arterial thrombosis, which causes heart attacks and other events triggered by abnormal clotting1,2,3,4,5. The coagulation protease thrombin is a potent activator of platelets ex vivo6. However, because thrombin also mediates fibrin deposition and because multiple agonists can trigger platelet activation7, the relative importance of platelet activation by thrombin in haemostasis and thrombosis is unknown. Thrombin triggers cellular responses at least in part through protease-activated receptors (PARs)8. Mouse platelets express PAR3 and PAR4 (ref. 9). Here we show that platelets from PAR4-deficient mice failed to change shape, mobilize calcium, secrete ATP or aggregate in response to thrombin. This result demonstrates that PAR signalling is necessary for mouse platelet activation by thrombin and supports the model that mouse PAR3 (mPAR3) does not by itself mediate transmembrane signalling but instead acts as a cofactor for thrombin cleavage and activation of mPAR4 (ref. 10). Importantly, PAR4-deficient mice had markedly prolonged bleeding times and were protected in a model of arteriolar thrombosis. Thus platelet activation by thrombin is necessary for normal haemostasis and may be an important target in the treatment of thrombosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of the mouse PAR4 gene.
Figure 2: Par4-/- platelets lack thrombin responses.
Figure 3: Haemostasis and thrombosis in Par4-/- mice.

Similar content being viewed by others

References

  1. Lewis, H. D. Jr et al. Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina. Results of a Veterans Administration Cooperative Study. N. Engl. J. Med. 309, 396–403 (1983).

    Article  Google Scholar 

  2. Coller, B. S., Folts, J. D., Scudder, L. E. & Smith, S. R. Antithrombotic effect of a monoclonal antibody to the platelet glycoprotein IIb/IIIa receptor in an experimental animal model. Blood 68, 783–786 (1986).

    CAS  PubMed  Google Scholar 

  3. Davies, M. J., Bland, J. M., Hangartner, J. R., Angelini, A. & Thomas, A. C. Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur. Heart J. 10, 203–208 (1989).

    Article  CAS  Google Scholar 

  4. CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet 348, 1329–1339 (1996).

    Article  Google Scholar 

  5. PURSUIT Trial Investigators (Platelet Glycoprotein IIb/IIIa in Unstable Angina: Receptor Suppression Using Integrilin Therapy). Inhibition of platelet glycoprotein IIb/IIIa with eptifibatide in patients with acute coronary syndromes. N. Engl. J. Med. 339, 436–443 (1998).

    Article  Google Scholar 

  6. Davey, M. G. & Lüscher, E. F. Actions of thrombin and other coagulant and proteolytic enzymes on blood platelets. Nature 216, 857–858 (1967).

    Article  ADS  CAS  Google Scholar 

  7. Coleman, R. W., Marder, V. J., Salzman, E. W. & Hirsh, J. in Hemostasis and Thrombosis (eds Coleman, R. W., Marder, V. J., Salzman, E. W. & Hirsh, J.) 3–17 (Lippincott, Philadelphia, 1994).

    Google Scholar 

  8. Coughlin, S. R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000).

    Article  CAS  Google Scholar 

  9. Kahn, M. L. et al. A dual thrombin receptor system for platelet activation. Nature 394, 690–694 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Nakanishi-Matsui, M. et al. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404, 609–613 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Kehrel, B. et al. Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood 91, 491–499 (1998).

    CAS  PubMed  Google Scholar 

  12. Ishihara, H. et al. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502–506 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Andrews, R. K. et al. The glycoprotein Ib-IX-V complex in platelet adhesion and signaling. Thromb. Haemost. 82, 357–364 (1999).

    Article  CAS  Google Scholar 

  14. Ware, J. et al. Nonsense mutation in the glycoprotein Ib alpha coding sequence associated with Bernard-Soulier syndrome. Proc. Natl Acad. Sci. USA 87, 2026–2030 (1990).

    Article  ADS  CAS  Google Scholar 

  15. De Marco, L., Mazzucato, M., Masotti, A., Fenton, J. W. II & Ruggeri, Z. M. Function of glycoprotein Ib alpha in platelet activation induced by alpha-thrombin. J. Biol. Chem. 266, 23776–23783 (1991).

    CAS  PubMed  Google Scholar 

  16. Ramakrishnan, V. et al. A thrombin receptor function for platelet glycoprotein Ib-IX unmasked by cleavage of glycoprotein V. Proc. Natl Acad. Sci. USA 98, 1823–1828 (2001).

    Article  ADS  CAS  Google Scholar 

  17. Denis, C. et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc. Natl Acad. Sci. USA 95, 9524–9529 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Giesen, P. L. et al. Blood-borne tissue factor: another view of thrombosis. Proc. Natl Acad. Sci. USA 96, 2311–2315 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Mann, K. G. Biochemistry and physiology of blood coagulation. Thromb. Haemost. 82, 165–174 (1999).

    Article  CAS  Google Scholar 

  20. Offermanns, S. The role of heterotrimeric G proteins in platelet activation. Biol. Chem. 381, 389–396 (2000).

    Article  CAS  Google Scholar 

  21. Watson, S., Berlanga, O., Best, D. & Frampton, J. Update on collagen receptor interactions in platelets: is the two-state model still valid? Platelets 11, 252–258 (2000).

    Article  CAS  Google Scholar 

  22. Schwartz, M. A. & Shattil, S. J. Signaling networks linking integrins and Rho family GTPases. Trends Biochem. Sci. 25, 388–391 (2000).

    Article  CAS  Google Scholar 

  23. Cook, J. J. et al. An antibody against the exosite of the cloned thrombin receptor inhibits experimental arterial thrombosis in the African green monkey. Circulation 91, 2961–2971 (1995).

    Article  CAS  Google Scholar 

  24. Mortensen, R. in Current Protocols in Molecular Biology (eds Ausubel, F. M. et al.) (Suppl. 23) 9.16.1 (Wiley, New York, 1993).

    Google Scholar 

  25. Sauer, B. in Guide to Techniques in Mouse Development (eds Wassarman, P. M. & DePamphilis, M. L.) 890–900 (Academic, San Diego, 1993).

    Book  Google Scholar 

  26. Kahn, M. L., Hammes, S. R., Botka, C. & Coughlin, S. R. Gene and locus structure and chromosomal localization of the protease-activated receptor gene family. J. Biol. Chem. 273, 23290–23296 (1998).

    Article  CAS  Google Scholar 

  27. Meiner, V. L. et al. Disruption of the acyl-CoA:cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals. Proc. Natl Acad. Sci. USA 93, 14041–14046 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Lewandoski, M., Meyers, E. N. & Martin, G. R. Analysis of Fgf8 gene function in vertebrate development. Cold Spring Harb. Symp. Quant. Biol. 62, 159–168 (1997).

    Article  CAS  Google Scholar 

  29. Ishihara, H., Zeng, D., Connolly, A. J., Tam, C. & Coughlin, S. R. Antibodies to protease-activated receptor 3 inhibit activation of mouse platelets by thrombin. Blood 91, 4152–4157 (1998).

    CAS  PubMed  Google Scholar 

  30. Schlaeger, T. M., Qin, Y., Fujiwara, Y., Magram, J. & Sato, T. N. Vascular endothelial cell lineage-specific promoter in transgenic mice. Development 121, 1089–1098 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Advincula for mouse husbandry support, I. Hsieh for assistance with transmission electron microscopy of platelets, D. Bainton for examining the electromicrographs, V. Ramakrishnan and D. Phillips for providing advice regarding platelet preparation and assessment of DFP-thrombin signalling, and G. Martin for the β-actin-Cre mouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun R. Coughlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sambrano, G., Weiss, E., Zheng, YW. et al. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 413, 74–78 (2001). https://doi.org/10.1038/35092573

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35092573

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing