Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The endocytic pathway: a mosaic of domains

Key Points

  • In the endocytic pathway, internalized molecules are delivered to early endosomes, where efficient sorting occurs. Although some molecules, in particular recycling receptors, are rapidly recycled back to the plasma membrane for reutilization; others, including downregulated receptors, are transported to late endosomes and lysosomes for degradation.

  • Early endosomes exhibit a highly pleiomorphic organization, and transport intermediates formed on early endosomal membranes — along recycling and degradation routes — also differ significantly both morphologically and functionally. Selective changes must occur in bilayer organization during biogenesis of these intermediates, and these changes might contribute to protein sorting.

  • Although recycling occurs through thin tubules, transport to late endosomes is mediated by multivesicular intermediates (endosomal carrier vesicles/multivesicular bodies; ECV/MVBs). In addition to this morphologically visible mosaic of membrane domains, key components that regulate membrane organization and protein transport are also distributed in a non-random manner on endosomal membranes.

  • Late endosomes also exhibit a highly pleiomorphic organization, including numerous membrane invaginations with a specific lipid composition. These invaginations seem to have a role not only in cargo degradation, but also in protein–lipid transport through the compartment. Candidate proteins and lipids that regulate the dynamics of these invaginations have been identified.

  • Lysosomes can only be identified at the molecular level by the fact that they lack a few proteins found in late endosomes. Both compartments might represent separate elements of a common dynamic network, involved in sorting and degradation, respectively. Membrane invaginations might have turnpike functions in the network, as they seem to be involved in both transport and degradation.

  • Since a given combination of protein–lipid machines and regulatory factors — but not individual components — seem unique to each endocytic compartment and are distributed non-randomly on membranes, it is attractive to speculate that endosomal membranes are built from modular elements.

Abstract

Organelles in the endocytic pathway are composed of a mosaic of structural and functional regions. These regions consist, at least in part, of specialized protein–lipid domains within the plane of the membrane, or of protein complexes associated with specific membrane lipids. Whereas some of these molecular assemblies can be found in more than one compartment, a given combination seems to be unique to each compartment, indicating that membrane organization might be modular.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of the endocytic pathway.
Figure 2: The early endosome.
Figure 3: Endosomal carrier vesicles/multivesicular bodies.
Figure 4: Lipid–protein microdomains and molecular machines.
Figure 5: Degradation or recycling?

Similar content being viewed by others

References

  1. Gruenberg, J., Griffiths, G. & Howell, K. E. Characterisation of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J. Cell Biol. 108, 1301–1316 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Mukherjee, S. & Maxfield, F. R. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1, 203–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Apodaca, G., Katz, L. A. & Mostov, K. E. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J. Cell Biol. 125, 67–86 (1994).Together with reference 95 and studies from the Kai Simons group, this paper shows the organization of the apical and basolateral endocytic pathways in epithelial cells along the degradation, recycling and transcytotic routes.

    Article  CAS  PubMed  Google Scholar 

  4. Blagoveshchenskaya, A. D., Norcott, J. P. & Cutler, D. F. Lysosomal targeting of P-selectin is mediated by a novel sequence within its cytoplasmic tail. J. Biol. Chem. 273, 2729–2737 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Subtil, A., Rocca, A. & Dautry-Varsat, A. Molecular characterization of the signal responsible for the targeting of the interleukin 2 receptor β chain toward intracellular degradation. J. Biol. Chem. 273, 29424–29429 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Piguet, V. et al. Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of β-COP in endosomes. Cell 97, 63–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Kil, S. J. & Carlin, C. EGF receptor residues Leu679, Leu680 mediate selective sorting of ligand-receptor complexes in early endosomal compartments. J. Cell Physiol. 185, 47–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Rocca, A., Lamaze, C., Subtil, A. & Dautry-Varsat, A. Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor β chain to late endocytic compartments. Mol. Biol. Cell 12, 1293–1301 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lemmon, S. K. & Traub, L. M. Sorting in the endosomal system in yeast and animal cells. Curr. Opin. Cell Biol. 12, 457–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  11. Ikonen, E. Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13, 470–477 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Parton, R. G., Joggerst, B. & Simons, K. Regulated internalization of caveolae. J. Cell Biol. 127, 1199–1215 (1994).Provides the first evidence that caveolae can be endocytosed in non-endothelial cells.

    Article  CAS  PubMed  Google Scholar 

  13. Verkade, P., Harder, T., Lafont, F. & Simons, K. Induction of caveolae in the apical plasma membrane of Madin–Darby canine kidney cells. J. Cell Biol. 148, 727–739 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamaze, C. et al. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell 7, 661–671 (2001).A receptor known to follow the classical endocytic pathway is shown to be internalized by a mechanism — perhaps raft-dependent — that does not depend on the clathrin machinery.

    Article  CAS  PubMed  Google Scholar 

  15. Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol. 3, 473–483 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Gagescu, R. et al. The recycling endosome of MDCK cells is a mildly acidic compartment rich in raft components. Mol. Biol. Cell 11, 2775–2791 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mukherjee, S., Zha, X., Tabas, I. & Maxfield, F. R. Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys. J. 75, 1915–1925 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mayor, S., Sabharanjak, S. & Maxfield, F. R. Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J. 17, 4626–4638 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mukherjee, S., Soe, T. T. & Maxfield, F. R. Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J. Cell Biol. 144, 1271–1284 (1999).Shows that hydrophobic tails are important for lipid sorting in early endosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, Y. A. & Scheller, R. H. SNARE-mediated membrane fusion. Nature Rev. Mol. Cell Biol. 2, 98–106 (2001).

    Article  CAS  Google Scholar 

  21. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).Following the work of Zerial and his group with Rab5 and its effectors, this review presents and discusses the concept of Rab platforms.

    Article  CAS  Google Scholar 

  22. Simonsen, A., Gaullier, J. M., D' Arrigo, A. & Stenmark, H. The RAB5 effector EEA1 interacts directly with syntaxin-6. J. Biol. Chem. 274, 28857–28860 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. McBride, H. M. et al. Oligomeric complexes link RAB5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Prekeris, R., Klumperman, J., Chen, Y. A. & Scheller, R. H. Syntaxin 13 mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes. J. Cell Biol. 143, 957–971 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McLauchlan, H. et al. A novel role for RAB5-GDI in ligand sequestration into clathrin-coated pits. Curr. Biol. 8, 34–45 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Lanzetti, L. et al. The EPS8 protein coordinates EGF receptor signalling through Rac and trafficking through RAB5. Nature 408, 374–377 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Stenmark, H., Vitale, G., Ullrich, O. & Zerial, M. Rabaptin-5 is a direct effector of the small GTPase RAB5 in endocytic membrane fusion. Cell 83, 423–432 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Cormont, M., Mari, M., Galmiche, A., Hofman, P. & Le Marchand-Brustel, Y. A FYVE-finger-containing protein, RABIP4, is a RAB4 effector involved in early endosomal traffic. Proc. Natl Acad. Sci. USA 98, 1637–1642 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Simonsen, A. et al. EEA1 links PI(3)K function to RAB5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Nielsen, E. et al. Rabenosyn-5, a novel RAB5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol. 151, 602–612 (2000).

    Article  Google Scholar 

  32. Mu, F.-T. et al. EEA1, an early endosome-associated protein. EEA1 is a conserved α-helical peripheral membrane protein flanked by cysteine 'fingers' and contains a calmodulin-binding IQ motif. J. Biol. Chem. 270, 13503–13511 (1994).

    Article  Google Scholar 

  33. Verges, M., Havel, R. J. & Mostov, K. E. A tubular endosomal fraction from rat liver: biochemical evidence of receptor sorting by default. Proc. Natl Acad. Sci. USA 96, 10146–10151 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ito, K. et al. Molecular cloning of a novel 130-kDa cytoplasmic protein, Ankhzn, containing Ankyrin repeats hooked to a zinc finger motif. Biochem. Biophys. Res. Commun. 257, 206–213 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Komada, M., Masaki, R., Yamamoto, A. & Kitamura, N. Hrs, a tyrosine kinase substrate with a conserved double zinc finger domain, is localized to the cytoplasmic surface of early endosomes. J. Biol. Chem. 272, 20538–20544 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayakawa, A. & Kitamura, N. Early endosomal localization of hrs requires a sequence within the proline- and glutamine-rich region but not the FYVE finger. J. Biol. Chem. 275, 29636–29642 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Odorizzi, G., Babst, M. & Emr, S. D. FAB1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95, 847–858 (1998).This paper describes the mechanisms that control incorporation of proteins within the yeast endosome/vacuole lumen, and the role of PtdIns(3)P signalling at this step.

    Article  CAS  PubMed  Google Scholar 

  39. Kanai, F. et al. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature Cell Biol. 3, 675–678 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Ellson, C. D. et al. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nature Cell Biol. 3, 679–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Cheever, M. L. et al. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biol. 3, 613–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Xu, Y., Hortsman, H., Seet, L., Wong, S. H. & Hong, W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nature Cell Biol. 3, 658–666 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Chin, L. S., Raynor, M. C., Wei, X., Chen, H. Q. & Li, L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J. Biol. Chem. 276, 7069–7078 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Kurten, R. C., Cadena, D. L. & Gill, G. N. Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science 272, 1008–1010 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barr, V. A., Phillips, S. A., Taylor, S. I. & Haft, C. R. Overexpression of a novel sorting nexin, SNX15, affects endosome morphology and protein trafficking. Traffic 1, 904–916 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Gerke, V. & Moss, S. E. Annexins and membrane dynamics. Biochim. Biophys. Acta 1357, 129–154 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Oling, F., Bergsma-Schutter, W. & Brisson, A. Trimers, dimers of trimers, and trimers of trimers are common building blocks of Annexin a5 two-dimensional crystals. J. Struct. Biol. 133, 55–63 (2001).Shows that annexins tend to self-organize into bidimensional ordered arrays.

    Article  CAS  PubMed  Google Scholar 

  49. Harder, T. & Gerke, V. The subcellular distribution of early endosomes is affected by the Annexin II(2) p11(2) complex. J. Cell Biol. 123, 1119–1132 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Emans, N. et al. Annexin II is a major component of fusogenic endosomal vesicles. J. Cell Biol. 120, 1357–1370 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Harder, T., Kellner, R., Parton, R. & Gruenberg, J. Specific release of membrane bound Annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol. Biol. Cell 8, 533–545 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Babiychuk, E. B. & Draeger, A. Annexins in cell membrane dynamics. Ca2+-regulated association of lipid microdomains. J. Cell Biol. 150, 1113–1124 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Whitney, J. A., Gomez, M., Sheff, D., Kreis, T. E. & Mellman, I. Cytoplasmic coat proteins involved in endosome function. Cell 83, 703–713 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Aniento, F., Gu, F., Parton, R. & Gruenberg, J. An endosomal bcop is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J. Cell Biol. 133, 29–41 (1996).References 53 and 54 show that an endosomal version of the COPI coat — which regulates retrograde transport in the early biosynthetic pathway — functions in the early endocytic pathway.

    Article  CAS  PubMed  Google Scholar 

  55. Botelho, R. J., Hackam, D. J., Schreiber, A. D. & Grinstein, S. Role of COP1 in phagosome maturation. J. Biol. Chem. 275, 15717–15727 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Gu, F. & Gruenberg, J. ARF1 regulates pH-dependent COP functions in the early endocytic pathway. J. Biol. Chem. 275, 8154–8160 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Maranda, B. et al. Intra-endosomal pH-sensitive recruitment of the ARF-nucleotide exchange factor ARNO and ARF6 from cytoplasm to proximal tubule endosomes. J. Biol. Chem. 276, 18540–18550 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Kirchhausen, T. Three ways to make a vesicle. Nature Rev. Mol. Cell Biol. 1, 187–198 (2000).

    Article  CAS  Google Scholar 

  59. Spang, A., Matsuoka, K., Hamamoto, S., Schekman, R. & Orci, L., Coatomer ARF1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. Proc. Natl Acad. Sci. USA 95, 11199–11204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hobbie, L., Fisher, A. S., Lee, S., Flint, A. & Krieger, M. Isolation of three classes of conditional lethal Chinese hamster ovary cell mutants with temperature-sensitive defects in low density lipoprotein receptor. J. Biol. Chem. 269, 20958–20970 (1994).

    CAS  PubMed  Google Scholar 

  61. Daro, E., Sheff, D., Gomez, M., Kreis, T. & Mellman, I. Inhibition of endosome function in CHO cells bearing a temperature-sensitive defect in the coatomer (COP1) component epsilon-COP. J. Cell Biol. 139, 1747–1759 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gu, F., Aniento, F., Parton, R. & Gruenberg, J. Functionnal dissection of COP1 subunits in the biogenesis of multivesicular endosomes. J. Cell Biol. 139, 1183–1195 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rieder, S. E., Banta, L. M., Kohrer, K., McCaffery, J. M. & Emr, S. D. Multilamellar endosome-like compartment accumulates in the yeast Vps28 vacuolar protein sorting mutant. Mol. Biol. Cell 7, 985–999 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Clague, M., Urbé, S., Aniento, F. & Gruenberg, J. Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J. Biol. Chem. 269, 21–24 (1994).

    CAS  PubMed  Google Scholar 

  65. Presley, J. F., Mayor, S., McGraw, T. E., Dunn, K. W. & Maxfield, F. R. Bafilomycin A1 treatment retards transferrin receptor recycling more than bulk membrane recycling. J. Biol. Chem. 272, 13929–13936 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Yamashiro, D. J., Tycko, B., Fluss, S. R. & Maxfield, F. R. Segregation of transferrin to a mildly acidic (pH 6.4) para-Golgi compartment in the recycling pathway. Cell 37, 789–800 (1984).Provides the initial characterization of recycling endosomes.

    Article  CAS  PubMed  Google Scholar 

  67. Parton, R. G., Simons, K. & Dotti, C. G. Axonal and dentritic endocytic pathways in cultured neurons. J. Cell Biol. 119, 123–137 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Hopkins, C. R., Gibson, A., Shipman, M. & Miller, K. Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature 346, 335–339 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. & Zerial, M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of RAB4, RAB5, and RAB11. J. Cell Biol. 149, 901–914 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Galli, T. et al. Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells. J. Cell Biol. 125, 1015–1024 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Steegmaier, M., Lee, K. C., Prekeris, R. & Scheller, R. H. SNARE protein trafficking in polarized MDCK cells. Traffic 1, 553–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Besterman, J. M., Airhart, J. A., Woodworth, R. C. & Low, R. B. Exocytosis of pinocytosed fluid in cultured cells: kinetic evidence for rapid turnover and compartmentation. J. Cell Biol. 91, 716–727 (1981).

    Article  CAS  PubMed  Google Scholar 

  73. Dunn, K. W., McGraw, T. E. & Maxfield, F. R. Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J. Cell Biol. 109, 3303–3314 (1989).

    Article  CAS  PubMed  Google Scholar 

  74. Sheff, D. R., Daro, E. A., Hull, M. & Mellman, I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 145, 123–139 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hao, M. & Maxfield, F. R. Characterization of rapid membrane internalization and recycling. J. Biol. Chem. 275, 15279–15286 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Apodaca, G. Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic 2, 149–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Durrbach, A., Raposo, G., Tenza, D., Louvard, D. & Coudrier, E. Truncated brush border Myosin I affects membrane traffic in polarized epithelial cells. Traffic 1, 411–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Huber, L. et al. Both calmodulin and the unconventional myosin MYR4 regulate membrane trafficking along the recycling pathway of MDCK cells. Traffic 1, 494–503 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Al-Awar, O., Radhakrishna, H., Powell, N. N. & Donaldson, J. G. Separation of membrane trafficking and actin remodeling functions of ARF6 with an effector domain mutant. Mol. Cell Biol. 20, 5998–6007 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. D'Souza-Schorey, C., Boshans, R. L., McDonough, M., Stahl, P. D. & Van Aelst, L. A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J. 16, 5445–5454 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tarricone, C. et al. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature 411, 215–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Di Cesare, A. et al. p95-APP1 links membrane transport to Rac-mediated reorganization of actin. Nature Cell Biol. 2, 521–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Stoorvogel, W., Oorschot, V. & Geuze, H. J. A novel class of clathrin-coated vesicles budding from endosomes. J. Cell Biol. 132, 21–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Meyer, C. et al. μ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J. 19, 2193–2203 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lin, S. X., Grant, B., Hirsh, D. & Maxfield, F. R. Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nature Cell Biol. 3, 567–572 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Grant, B. et al. Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nature Cell Biol. 3, 573–579 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Santolini, E., Salcini, A. E., Kay, B. K., Yamabhai, M. & Di Fiore, P. P. The EH network. Exp. Cell Res. 253, 186–209 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Gu, F. & Gruenberg, J. Biogenesis of transport intermediates in the endocytic pathway. FEBS Lett. 452, 61–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Futter, C. E., Pearse, A., Hewlett, L. J. & Hopkins, C. R. Multivesicular endosomes containing internalized EGF–EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 132, 1011–1023 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Fernandez-Borja, M. et al. Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Curr Biol. 9, 55–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Komada, M. & Soriano, P. Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev. 13, 1475–1485 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Babst, M., Odorizzi, G., Estepa, E. J. & Emr, S. D. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homolog, Vps23p, both function in late endosomal trafficking. Traffic 1, 248–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Scheuring, S. et al. Cloning, characterisation, and functional expression of the Mus musculus SKD1 gene in yeast demonstrates that the mouse SKD1 and the yeast VPS4 genes are orthologues and involved in intracellular protein trafficking. Gene 234, 149–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Mulholland, J., Konopka, J., Singer-Kruger, B., Zerial, M. & Botstein, D. Visualization of receptor-mediated endocytosis in yeast. Mol. Biol. Cell 10, 799–817 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bomsel, M., Parton, R., Kuznetsov, S. A., Schroer, T. A. & Gruenberg, J. Microtubule and motor dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62, 719–731 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Aniento, F., Emans, N., Griffiths, G. & Gruenberg, J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123, 1373–1388 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Griffiths, G., Hoflack, B., Simons, K., Mellman, I. & Kornfeld, S. The mannose-6-phosphate receptor and the biogenesis of lysosomes. Cell 52, 329–341 (1988).The pre-lysosomal compartment (or late endosome) is characterized as the compartment that contains M6PR in transit within membrane invaginations, in contrast to lysosomes.

    Article  CAS  PubMed  Google Scholar 

  98. Alpy, F. et al. The StAR homolog MLN64 a late endosomal cholesterol binding protein. J. Biol. Chem. 276, 4261–4269 (2000).

    Article  PubMed  Google Scholar 

  99. Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure/function. Nature 392, 193–197 (1998).References 99 and 111 show that late endosome internal membranes form specialized domains that contain high amounts of LBPA and that LBPA membranes are involved in protein and lipid traffic.

    Article  CAS  PubMed  Google Scholar 

  100. Brotherus, J., Renkonen, O., Herrmann, J. & Fisher, W. Novel stereochemical configuration in lysobisphosphatidic acid of cultured BHK cells. Chem. Phys. Lipids 13, 178–182 (1974).

    Article  CAS  PubMed  Google Scholar 

  101. Kobayashi, T., Gu, F. & Gruenberg, J. Lipids and lipid domains in endocytic membrane traffic. Semin. Cell Dev. Biol. 9, 517–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Kobayashi, T., Startchev, K., Whitney, A. J. & Gruenberg, J. Localization of lysobisphosphatidic acid-rich membrane domains in late endosomes. Biol. Chem. 382, 483–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Amidon, B., Brown, A. & Waite, M. Transacylase and phospholipases in the synthesis of bis(monoacylglycero)phosphate. Biochemistry 35, 13995–14002 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Wilkening, G., Linke, T. & Sandhoff, K. Lysosomal degradation on vesicular membrane surfaces. Enhanced glucosylceramide degradation by lysosomal anionic lipids and activators. J. Biol. Chem. 273, 30271–30278 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Escola, J. M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B lymphocytes. J. Biol. Chem. 273, 20121–20127 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Geuze, H. J. The role of endosomes and lysosomes in MHC class II functioning. Immunol. Today 19, 282–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Pierre, P. & Mellman, I. Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell 93, 1135–1145 (1998).Shows that a specific protease–protease inhibitor system regulates the fate of MHC class II in dendritic cells.

    Article  CAS  PubMed  Google Scholar 

  108. Sanderson, F. et al. Accumulation of HLA-DM, a regulator of antigen presentation, in MHC class II compartments. Science 266, 1566–1569 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Denzer, K. et al. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265 (2000).Together with previous studies from Hans Geuze's group, this paper shows that exosomes are microvesicles derived from late endocytic membrane invaginations, which are secreted through a novel pathway.

    Article  CAS  PubMed  Google Scholar 

  110. Reaves, B. J., Row, P. E., Bright, N. A., Luzio, J. P. & Davidson, H. W. Loss of cation-independent mannose 6-phosphate receptor expression promotes the accumulation of lysobisphosphatidic acid in multilamellar bodies. J. Cell Sci. 113, 4099–4108 (2000).

    CAS  PubMed  Google Scholar 

  111. Kobayashi, T. et al. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biol. 1, 113–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Galve de Rochemonteix, B. et al. Interaction of anti-phospholipid antibodies with late endosomes of human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 20, 563–574 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Kobayashi, K. et al. The tetraspanin CD63/LAMP3 cycles between endocytic and secretory compartments in human endothelial cells. Mol. Biol. Cell 11, 1829–1843 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Simons, K. & Gruenberg, J. Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol. 10, 459–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Pagano, R. E., Puri, V., Dominguez, M. & Marks, D. L. Membrane traffic in sphingolipid storage diseases. Traffic 1, 807–815 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Gruenberg, J. & Maxfield, F. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 7, 552–563 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Martinez, O. & Goud, B. Rab proteins. Biochim. Biophys. Acta 1404, 101–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Caplan, S., Hartnell, L. M., Aguilar, R. C., Naslavsky, N. & Bonifacino, J. S. Human Vam6p promotes lysosome clustering and fusion in vivo. J. Cell Biol. 154, 109–122 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mullock, B. M., Bright, N. A., Fearon, C. W., Gray, S. R. & Luzio, J. P. Fusion of lysosomes with late endosomes produces a hybrid organelle of intermediate density and is NSF dependent. J. Cell Biol. 140, 591–601 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jahraus, A., Storrie, B., Griffiths, G. & Desjardins, M. Evidence for retrograde traffic between terminal lysosomes and the prelysosomal/late endosome compartment. J. Cell Sci. 107, 145–157 (1994).

    CAS  PubMed  Google Scholar 

  121. Hollenbeck, P. J. & Swanson, J. A. Radial extension of macrophage tubular lysosomes supported by kinesin. Nature 346, 864–866 (1990).

    Article  CAS  PubMed  Google Scholar 

  122. Rabinowitz, S., Horstmann, H., Gordon, S. & Griffiths, G. Immunocytochemical characterization of the endocytic and phagolysosomal compartments in peritoneal macrophages. J. Cell Biol. 116, 95–112 (1992).

    Article  CAS  PubMed  Google Scholar 

  123. Parton, R. G., Dotti, C. G., Bacallao, R., Simons, K. & Prydz, K. pH-induced microtubule-dependent redistribution of late endosomes in neuronal and epithelial cells. J. Cell Biol. 113, 261–274 (1991).

    Article  CAS  PubMed  Google Scholar 

  124. Pfeffer, S. R. Membrane transport: retromer to the rescue. Curr. Biol. 11, R109–R111 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Neufeld, E. B. et al. The niemann-pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J. Biol. Chem. 274, 9627–9635 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Cavalli, V., Corti, M. & Gruenberg, J. Endocytosis and signaling cascades: a close encounter. FEBS Lett. 498, 190–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Aridor, M. & Hannan, L. A. Traffic jam: a compendium of human diseases that affect intracellular transport processes. Traffic 1, 836–851 (2000).Offers a complete list — at the time of publication — of human diseases that are linked to transport defects.

    Article  CAS  PubMed  Google Scholar 

  128. Gerrard, S. R., Bryant, N. J. & Stevens, T. H. VPS21 controls entry of endocytosed and biosynthetic proteins into the yeast prevacuolar compartment. Mol. Biol. Cell 11, 613–626 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wurmser, A. E. & Emr, S. D. Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J. 17, 4930–4942 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am very grateful to G. van der Goot and R. G. Parton for comments and suggestions. Support was by grants from the Swiss National Science Foundation and the International Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Flybase:

Hrs

 Locuslink:

Annexin II

ARF1

ARF6

ARNO

β-COP

CD63

cellubrevin

ɛCOP

EEA1

endobrevin

endosomal COPI complex

Îł-COP

interleukin-2 receptor β chain

LAMP1

M6PR

MLN64

NPC-1

P-selectin

RAB4

RAB5

RAB7

RAB9

Rab11

Rabaptin-5

Rabenosyn-5

RME-1

StAR

syntaxin-6

SNX1

SNX3

SNX15

TIP47

 OMIM:

Niemann–Pick type C

 SGD:

Fab1

VAM7

Vps4

Vps5

Vps27

Vps34

 Swiss-Prot:

CD4

EGFR

syntaxin-13

 Prosite:

FYVE domain

Glossary

CLATHRIN

Large protein, which polymerizes into a triskelion, comprising three heavy chains and three light chains. Triskelions assemble into polyhedral lattices to form clathrin coats.

LIPID RAFTS

Dynamic assemblies of cholesterol and sphingolipids in the plasma membrane, probably involved in cell signalling.

CAVEOLA

Specialized raft that contains the protein caveolin, and forms a flask-shaped, cholesterol-rich invagination of the plasma membrane that might mediate the uptake of some extracellular materials, and is probably involved in cell signalling.

CAVEOSOME

A recently discovered organelle that is involved in the intracellular transport of SV40 from caveolae to the endoplasmic reticulum.

GPI ANCHOR

The function of this post-translational modification is to attach proteins to the exoplasmic leaflet of membranes, possibly to specific domains therein. The anchor is made of one molecule of phosphatidylinositol to which a carbohydrate chain is linked through the C-6 hydroxyl of the inositol, and is linked to the protein through an ethanolamine phosphate moiety.

SNARES

(Soluble N-ethylmaleimide-sensitive factor attachment protein receptor). A family of membrane-tethered coiled-coil proteins that regulate fusion reactions and target specificity in the vacuolar system. They can be divided into vesicle-SNAREs and target-SNAREs on the basis of their localization, or into Q-SNAREs and R-SNAREs on the basis of a highly conserved amino acid.

YEAST CLASS E MUTANTS

One class of vacuolar protein sorting (VPS) mutants in yeast. Class E genes are involved in the delivery of both newly synthesized vacuolar enzyme carBoxypeptidase Y (CPY) and endocytosed proteins to the vacuole from the prevacuolar compartment. Mutations in any of the class E VPS gene products causes an accumulation of cargo in an aberrant endosome-like structure termed the class E compartment.

RETROMER COMPLEX

Protein complex consisting of Vps35, Vps26, Vps29, Vps17 and Vps5, which was discovered through genetic screens in Saccharomyces cerevisiae. It functions in the retrieval of proteins from the prevacuolar compartment and transport to the Golgi.

COPI COAT

Complex consisting of α-, β-, β'-, γ-, δ-, ɛ- and ζ-COP, also called coatomer. This coat complex functions in anterograde transport within the Golgi and in retrograde transport from the Golgi to the endoplasmic reticulum.

COPII COAT

Complex consisting of Sec13, Sec31, Sec23 and Sec24. This coat complex functions in anterograde transport from the endoplasmic reticulum to the Golgi.

LDLF CELLS

A mutant Chinese-hamster ovary cell line that was identified on the basis of its defect in low-density lipoprotein (LDL) transport. The mutation causing the phenotype was later identified as a deletion of É›-COP.

LBPA

Lysobisphosphatidic acid (LBPA) is a phospholipid, structurally analogous with phosphatidylglycerol. LBPA is poorly degradable, presumably because of its unusual stereoconfiguration, and is abundant within internal membranes of late endosomes.

TETRASPANIN FAMILY

The tetraspanin family contains proteins that span the membrane four times with two exoplasmic loops, and that can be found at the cell surface. Although some are highly restricted to specific tissues, others are widely distributed. Members of this family have been implicated in cell activation and proliferation, adhesion, motility, differentiation and cancer.

ANTIGEN-PRESENTING CELLS

A cell, most often a B lymphocyte, macrophage or dendritic cell, that is specialized in the generation of epitopes that are presented through major histocompatibility complex (MHC) class I or II to T lymphocytes.

DENDRITIC CELLS

'Professional' antigen-presenting cells found in T-cell areas of lymphoid tissues, but also as a minor cellular component in most tissues. They have a branched or dendritic morphology and are the most potent stimulators of T-cell responses.

MANNOSE 6-PHOSPHATE RECEPTOR

These receptors transport soluble lysosomal hydrolases to late endosomes by cycling between the trans-Golgi network and late endosomes. They bind in the trans-Golgi network to mannose 6-phosphate moieties on N-linked glycans of the hydrolases. They release the hydrolases in late endosomes and return to the trans-Golgi network for another round of transport.

WEIBEL–PALADE BODIES

Morphologically unique secretory structures of endothelial cells, which store von Willebrand factor — a protein involved in blood clotting — for eventual release.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruenberg, J. The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2, 721–730 (2001). https://doi.org/10.1038/35096054

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35096054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing