Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transmembrane crosstalk between the extracellular matrix and the cytoskeleton

Key Points

  • Cell adhesions represent the interaction interfaces between cells and the extracellular matrix. Their study provides exciting insights into the interplay between physical forces and molecular signalling in cell regulation.

  • Cells use transmembrane actin–integrin adhesion complexes as mechanosensors to probe the rigidity of the extracellular environment, mediate adhesion, trigger signalling, and remodel the extracellular matrix (ECM).

  • Local physical forces induce transitions in the types and functions of these cell–matrix adhesions: Focal complexes transform into focal adhesions, which serve as the source of fibrillar adhesions.

  • Integrin translocation appears to stretch fibronectin molecules, exposing cryptic sites that mediate matrix assembly into extracellular fibrils.

  • A key mechanism in these transitions appears to be conformational changes induced by force or a local reorganization of scaffold or signalling molecules to promote multimolecular assembly.

  • Both intracellular molecular-complex formation at adhesion sites and ECM assembly are regulated by Rho-family GTPases.

  • The main challenges for the future include:

     The identification of the full repertoire of adhesion-associated molecules.

     Comparison of the various 'focal complex'-like structures.

     Characterization of the molecular and cellular nature of the mechanosensors involved in cell–matrix adhesion.

     Characterization of the regulation and functional integration of the various forms of adhesions, which change depending on the state of differentiation, tissue location, and application of local forces.

     Exploring the structure and function of cell–matrix adhesions in three-dimensional microenvironments in vivo and explaining the roles of complex carbohydrates in cell–matrix interactions.

Abstract

Integrin-mediated cell adhesions provide dynamic, bidirectional links between the extracellular matrix and the cytoskeleton. Besides having central roles in cell migration and morphogenesis, focal adhesions and related structures convey information across the cell membrane, to regulate extracellular-matrix assembly, cell proliferation, differentiation, and death. This review describes integrin functions, mechanosensors, molecular switches and signal-transduction pathways activated and integrated by adhesion, with a unifying theme being the importance of local physical forces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunofluorescence microscopic localization of the main forms of integrin-mediated matrix adhesions.
Figure 2: Schematic depicting the complexity of the main molecular domains of cell–matrix adhesions.
Figure 3: Cells probe, respond to, and remodel the extracelluar matrix (ECM) using integrin–actin cytoskeleton adhesion complexes.
Figure 4: Modulation of focal-adhesion assembly by application of external force (a–d) or relaxation of actomyosin contractility (e–g).
Figure 5: Cells reorganize the underlying substrate differentially depending on its composition.
Figure 6: Ligand-binding regions and interaction sites of fibronectin.
Figure 7: Schematic representation of the main steps in fibronectin fibrillogenesis.

Similar content being viewed by others

References

  1. Gumbiner, B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996).

    CAS  PubMed  Google Scholar 

  2. Giancotti, F. G. & Ruoslahti, E. Integrin signalling. Science 285, 1028–1032 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Curtis, A. & Wilkinson, C. New depths in cell behaviour: reactions of cells to nanotopography. Biochem. Soc. Symp. 65, 15–26 (1999).

    CAS  PubMed  Google Scholar 

  4. Huang, S. & Ingber, D. E. The structural and mechanical complexity of cell-growth control. Nature Cell Biol. 1, E131–E138 (1999).

    CAS  PubMed  Google Scholar 

  5. Katz, B. Z. et al. Physical state of the extracellular matrix regulates the structure and molecular composition of cell–matrix adhesions. Mol. Biol. Cell 11, 1047–1060 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Abercrombie, M. & Dunn, G. A. Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp. Cell Res. 92, 57–62 (1975).

    CAS  PubMed  Google Scholar 

  8. Izzard, C. S. & Lochner, L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J. Cell. Sci. 21, 129–159 (1976).

    CAS  PubMed  Google Scholar 

  9. Sastry, S. K. & Burridge, K. Focal adhesions: A nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell. Res. 261, 25–36 (2000).

    CAS  PubMed  Google Scholar 

  10. Zamir, E. & Geiger, B. Molecular diversity of actin–integrin adhesion complexes. J. Cell Sci. (in the press).

  11. Kano, Y., Katoh, K., Masuda, M. & Fujiwara, K. Macromolecular composition of stress fiber-plasma membrane attachment sites in endothelial cells in situ. Circ. Res. 79, 1000–1006 (1996).

    CAS  PubMed  Google Scholar 

  12. Turner, C. E., Kramarcy, N., Sealock, R. & Burridge, K. Localization of paxillin, a focal adhesion protein, to smooth muscle dense plaques, and the myotendinous and neuromuscular junctions of skeletal muscle. Exp. Cell Res. 192, 651–655 (1991).

    CAS  PubMed  Google Scholar 

  13. Chen, W. T. & Singer, S. J. Immunoelectron microscopic studies of the sites of cell-substratum and cell-cell contacts in cultured fibroblasts. J. Cell Biol. 95, 205–222 (1982).

    CAS  PubMed  Google Scholar 

  14. Zamir, E. et al. Molecular diversity of cell-matrix adhesions. J. Cell Sci. 112, 1655–1669 (1999).

    CAS  PubMed  Google Scholar 

  15. Zamir, E. et al. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nature Cell Biol. 2, 191–196 (2000).The dynamics of focal adhesions and fibrillar adhesions and formation of the latter from the former were shown using time-lapse microscopy of GFP–paxillin and GFP–tensin.

    CAS  PubMed  Google Scholar 

  16. Bershadsky, A. D., Tint, I. S., Neyfakh, A. A. Jr, & Vasiliev, J. M. Focal contacts of normal and RSV-transformed quail cells. Hypothesis of the transformation-induced deficient maturation of focal contacts. Exp. Cell Res. 158, 433–444 (1985).

    CAS  PubMed  Google Scholar 

  17. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    CAS  PubMed  Google Scholar 

  18. Rottner, K., Hall, A. & Small, J. V. Interplay between rac and rho in the control of substrate contact dynamics. Curr. Biol. 9, 640–648 (1999).In this study and in reference 17 , differential signalling requirements for focal adhesions and focal complexes were established. Focal complex formation depends on Rac activity, whereas focal adhesions require Rho and Rho-kinase activity.

    CAS  PubMed  Google Scholar 

  19. Tarone, G., Cirillo, D., Giancotti, F. G., Comoglio, P. M. & Marchisio, P. C. Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp. Cell Res. 159, 141–157 (1985).

    CAS  PubMed  Google Scholar 

  20. Zambonin-Zallone, A. et al. Immunocytochemical distribution of extracellular matrix receptors in human osteoclasts: a β 3 integrin is colocalized with vinculin and talin in the podosomes of osteoclastoma giant cells. Exp. Cell Res. 182, 645–652 (1989).

    CAS  PubMed  Google Scholar 

  21. Gaidano, G. et al. Integrin distribution and cytoskeleton organization in normal and malignant monocytes. Leukemia 4, 682–687 (1990).

    CAS  PubMed  Google Scholar 

  22. Chellaiah, M. et al. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J. Cell Biol. 148, 665–678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ochoa, G. C. et al. A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell Biol. 150, 377–389 (2000).An interesting discovery of dynamin localization at the tubular invaginations of the plasma membrane in podosomes and characterization of its involvement in podosome formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, W., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development 125, 327–337 (1998).

    CAS  PubMed  Google Scholar 

  25. Sheppard, D. In vivo functions of integrins: lessons from null mutations in mice. Matrix Biol. 19, 203–209 (2000).

    CAS  PubMed  Google Scholar 

  26. Liu, S., Calderwood, D. A. & Ginsberg, M. H. Integrin cytoplasmic domain-binding proteins. J. Cell Sci. 113, 3563–3571 (2000).

    CAS  PubMed  Google Scholar 

  27. Echtermeyer, F., Baciu, P. C., Saoncella, S., Ge, Y. & Goetinck, P. F. Syndecan-4 core protein is sufficient for the assembly of focal adhesions and actin stress fibers. J. Cell Sci. 112, 3433–3441 (1999).

    CAS  PubMed  Google Scholar 

  28. Bono, P., Rubin, K., Higgins, J. M. & Hynes, R. O. Layilin, a novel integral membrane protein, is a hyaluronan receptor. Mol. Biol. Cell 12, 891–900 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei, Y., Yang, X., Liu, Q., Wilkins, J. A. & Chapman, H. A. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J. Cell Biol. 144, 1285–1294 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Prehoda, K. E., Scott, J. A., Mullins, R. D. & Lim, W. A. Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290, 801–806 (2000).

    CAS  PubMed  Google Scholar 

  31. Raucher, D. et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221–228 (2000).This study directly showed PtdIns(4,5)P 2 -mediated control of plasma membrane interaction with the underlying cytoskeleton.

    CAS  PubMed  Google Scholar 

  32. Fukami, K., Endo, T., Imamura, M. & Takenawa, T. α-actinin and vinculin are PIP2-binding proteins involved in signaling by tyrosine kinase. J. Biol. Chem. 269, 1518–1522 (1994).

    CAS  PubMed  Google Scholar 

  33. Tall, E. G., Spector, I., Pentyala, S. N., Bitter, I. & Rebecchi, M. J. Dynamics of phosphatidylinositol 4,5-bisphosphate in actin-rich structures. Curr. Biol. 10, 743–746 (2000).

    CAS  PubMed  Google Scholar 

  34. Serra-Pages, C. et al. The LAR transmembrane protein tyrosine phosphatase and a coiled–coil LAR-interacting protein co-localize at focal adhesions. EMBO J. 14, 2827–2838 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Inagaki, K. et al. SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. EMBO J. 19, 6721–6731 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, S. & Lin, D. Mapping of actin, vinculin, and integrin binding domains suggests a direct role of tensin in actin–membrane association. Mol. Biol. Cell 7, (suppl.) 389a (1996).

    Google Scholar 

  37. Han, D. C., Rodriguez, L. G. & Guan, J. L. Identification of a novel interaction between integrin β1 and 14-3-3β. Oncogene 20, 346–357 (2001).

    CAS  PubMed  Google Scholar 

  38. Liu, S. & Ginsberg, M. H. Paxillin binding to a conserved sequence motif in the α4 integrin cytoplasmic domain. J. Biol. Chem. 275, 22736–22742 (2000).

    CAS  PubMed  Google Scholar 

  39. Liu, S., Slepak, M. & Ginsberg, M. H. Direct binding of paxillin to the α9 integrin cytoplasmic domain inhibits cell spreading. J. Biol. Chem. 27, 37086–37092 (2001).

    Google Scholar 

  40. Prasad, N., Topping, R. S. & Decker, S. J. SH2-containing inositol 5′-phosphatase SHIP2 associates with the p130(Cas) adapter protein and regulates cellular adhesion and spreading. Mol. Cell. Biol. 21, 1416–1428 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Miyamoto, S. et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol. 131, 791–805 (1995).

    CAS  PubMed  Google Scholar 

  42. Miyamoto, S., Akiyama, S. K. & Yamada, K. M. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267, 883–885 (1995).The local reaction that is induced by interactions of integrins with matrix proteins was analysed by application of micron-sized beads that were covered with a protein of interest to the cell surface. Both the clustering of integrin molecules and their direct interaction with matrix proteins through the RGD motif (occupancy) were shown to be necessary for inducing recruitment of the appropriate cytoplasmic proteins to the adhesion site.

    CAS  PubMed  Google Scholar 

  43. Laukaitis, C. M., Webb, D. J., Donais, K. & Horwitz, A. F. Differential dynamics of α 5 integrin, paxillin, and α-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153, 1427–1440 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).This study first showed the role of myosin II downstream of Rho in the formation of focal adhesions.

    CAS  PubMed  Google Scholar 

  45. Bershadsky, A., Chausovsky, A., Becker, E., Lyubimova, A. & Geiger, B. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr. Biol. 6, 1279–1289 (1996).This study showed that microtubule disruption induces formation of focal adhesions through the activation of myosin II-driven contractility.

    CAS  PubMed  Google Scholar 

  46. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).This study showed the induction of focal-adhesion growth by locally applied tension force. Application of external force bypasses the requirements for Rho kinase (ROCK) and myosin II-dependent cell contractility for the formation of focal adhesions, provided that another target of Rho, mDia1, is active.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Volberg, T., Geiger, B., Citi, S. & Bershadsky, A. D. Effect of protein kinase inhibitor H-7 on the contractility, integrity, and membrane anchorage of the microfilament system. Cell Motil. Cytoskel. 29, 321–338 (1994).

    CAS  Google Scholar 

  48. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    CAS  PubMed  Google Scholar 

  49. Helfman, D. M. et al. Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol. Biol. Cell 10, 3097–3112 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Geiger, B. & Bershadsky, A. Assembly and mechanosensory function of focal contacts. Curr. Opin. Cell Biol. 13, 584–592 (2001).

    CAS  PubMed  Google Scholar 

  51. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol. 1, 136–143 (1999).

    CAS  PubMed  Google Scholar 

  52. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88, 39–48 (1997).The simulation of ECM rigidity by trapping ECM-coated beads by laser tweezers leads to a local increase in actomyosin-mediated force applied to the trapped bead by the cell. This indicates that isometric force applied to an integrin-mediated adhesion site induces local reinforcement of association of this site with the actin cytoskeleton.

    CAS  PubMed  Google Scholar 

  53. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001).This study showed that locomoting cells apply the strongest forces to small zyxin-containing focal complexes at the leading edge.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Harris, A. K., Wild, P. & Stopak, D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177–179 (1980).This study showed for the first time that the cell applies mechanical force to the substrate to which it adheres.

    CAS  PubMed  Google Scholar 

  55. Burton, K., Park, J. H. & Taylor, D. L. Keratocytes generate traction forces in two phases. Mol. Biol. Cell 10, 3745–3769 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Galbraith, C. G. & Sheetz, M. P. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94, 9114–9118 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Munevar, S., Wang, Y. & Dembo, M. Traction force microscopy of migrating normal and h-ras transformed 3t3 fibroblasts. Biophys. J. 80, 1744–1757 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).This study used micropatterned elastomer substrate and fluorescence imaging of focal adhesions in live cells, which showed a strong correlation between focal-adhesion size and local forces that are applied by the cell at these sites. The size of the focal contacts decreased rapidly in proportion to a decrease of these forces that were induced by BDM treatment.

    CAS  PubMed  Google Scholar 

  60. Kornberg, L., Earp, H. S., Parsons, J. T., Schaller, M. & Juliano, R. L. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J. Biol. Chem. 267, 23439–23442 (1992).

    CAS  PubMed  Google Scholar 

  61. Burridge, K., Turner, C. E. & Romer, L. H. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J. Cell Biol. 119, 893–903 (1992).This and the previous study initiated a cascade of publications showing that the formation of focal adhesions is accompanied by tyrosine phosphorylation of their main components.

    CAS  PubMed  Google Scholar 

  62. Rankin, S. & Rozengurt, E. Platelet-derived growth factor modulation of focal adhesion kinase (p125FAK) and paxillin tyrosine phosphorylation in Swiss 3T3 cells. Bell-shaped dose response and cross-talk with bombesin. J. Biol. Chem. 269, 704–710 (1994).

    CAS  PubMed  Google Scholar 

  63. Casamassima, A. & Rozengurt, E. Insulin-like growth factor I stimulates tyrosine phosphorylation of p130(Cas), focal adhesion kinase, and paxillin. Role of phosphatidylinositol 3'-kinase and formation of a p130(Cas). Crk complex. J. Biol. Chem. 273, 26149–26156 (1998).

    CAS  PubMed  Google Scholar 

  64. Li, S. et al. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J. Biol. Chem. 272, 30455–30462 (1997).

    CAS  PubMed  Google Scholar 

  65. Yano, Y., Geibel, J. & Sumpio, B. E. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am. J. Physiol. 271, C635–C649 (1996).

  66. Sai, X., Naruse, K. & Sokabe, M. Activation of pp60(src) is critical for stretch-induced orienting response in fibroblasts. J. Cell Sci. 112, 1365–1373 (1999).

    CAS  PubMed  Google Scholar 

  67. Parsons, J. T., Martin, K. H., Slack, J. K., Taylor, J. M. & Weed, S. A. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19, 5606–5613 (2000).

    CAS  PubMed  Google Scholar 

  68. Kaplan, K. B. et al. Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is regulated by phosphorylation of tyrosine 527. EMBO J. 13, 4745–4756 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaplan, K. B., Swedlow, J. R., Morgan, D. O. & Varmus, H. E. c-Src enhances the spreading of src−/− fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev. 9, 1505–1517 (1995).This study first showed the involvment of pp60c-src in the regulation of cell–matrix adhesion.

    CAS  PubMed  Google Scholar 

  70. Felsenfeld, D. P., Schwartzberg, P. L., Venegas, A., Tse, R. & Sheetz, M. P. Selective regulation of integrin–cytoskeleton interactions by the tyrosine kinase Src. Nature Cell Biol. 1, 200–206 (1999).

    CAS  PubMed  Google Scholar 

  71. Volberg, T., Romer, L., Zamir, E. & Geiger, B. pp60(c-src) and related tyrosine kinases: a role in the assembly and reorganization of matrix adhesions. J. Cell Sci. 114, 2279–2289 (2001).

    CAS  PubMed  Google Scholar 

  72. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    CAS  PubMed  Google Scholar 

  73. Schwartzberg, P. L. et al. Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src−/− mutant mice. Genes Dev. 11, 2835–2844 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Arthur, W. T., Petch, L. A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol. 10, 719–722 (2000).

    CAS  PubMed  Google Scholar 

  75. Ren, X. D. et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113, 3673–3678 (2000).

    CAS  PubMed  Google Scholar 

  76. Stephens, L. E. et al. Deletion of β1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 9, 1883–1895 (1995).

    CAS  PubMed  Google Scholar 

  77. Henry, M. D. & Campbell, K. P. A role for dystroglycan in basement membrane assembly. Cell 95, 859–870 (1998).

    CAS  PubMed  Google Scholar 

  78. Colognato, H., Winkelmann, D. A. & Yurchenco, P. D. Laminin polymerization induces a receptor-cytoskeleton network. J. Cell Biol. 145, 619–631 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Avnur, Z. & Geiger, B. The removal of extracellular fibronectin from areas of cell-substrate contact. Cell 25, 121–132 (1981).

    CAS  PubMed  Google Scholar 

  80. Pankov, R. et al. Integrin dynamics and matrix assembly: tensin-dependent translocation of α5β1 integrins promotes early fibronectin fibrillogenesis. J. Cell Biol. 148, 1075–1090 (2000).Direct demonstration of the specific translocation of α 5 β 1 integrin from focal adhesions to, and along, fibrillar adhesions that drive the formation of fibronectin matrix.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. McDonald, J. A., Kelley, D. G. & Broekelmann, T. J. Role of fibronectin in collagen deposition: Fab′ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. J. Cell Biol. 92, 485–492 (1982).

    CAS  PubMed  Google Scholar 

  82. Akiyama, S. K., Yamada, S. S., Chen, W. T. & Yamada, K. M. Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J. Cell Biol. 109, 863–875 (1989).

    CAS  PubMed  Google Scholar 

  83. Harris, A. K., Stopak, D. & Wild, P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290, 249–251 (1981).

    CAS  PubMed  Google Scholar 

  84. Mosher, D. F. (ed.) in Fibronectin. (Academic, San Diego, 1989).

    Google Scholar 

  85. Hynes, R. O. in Fibronectins. (Springer, New York, 1990).

    Google Scholar 

  86. Yamada, K. M. & Clark, R. A. F. in The Molecular and Cellular Biology of Wound Repair (ed. Clark, R. A. F.) 51–93 (Plenum, New York, 1996).

    Google Scholar 

  87. Wennerberg, K. et al. β1 integrin-dependent and-independent polymerization of fibronectin. J. Cell Biol. 132, 227–238 (1996).

    CAS  PubMed  Google Scholar 

  88. Yang, J. T. & Hynes, R. O. Fibronectin receptor functions in embryonic cells deficient in α5 β1 integrin can be replaced by αV integrins. Mol. Biol. Cell 7, 1737–1748 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sechler, J. L., Cumiskey, A. M., Gazzola, D. M. & Schwarzbauer, J. E. A novel RGD-independent fibronectin assembly pathway initiated by α4β1 integrin binding to the alternatively spliced V region. J. Cell Sci. 113, 1491–1498 (2000).

    CAS  PubMed  Google Scholar 

  90. Zhang, Q. & Mosher, D. F. Cross-linking of the NH2-terminal region of fibronectin to molecules of large apparent molecular mass. Characterization of fibronectin assembly sites induced by the treatment of fibroblasts with lysophosphatidic acid. J. Biol. Chem. 271, 33284–33292 (1996).

    CAS  PubMed  Google Scholar 

  91. Schwarzbauer, J. E. & Sechler, J. L. Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Curr. Opin. Cell Biol. 11, 622–627 (1999).

    CAS  PubMed  Google Scholar 

  92. Erickson, H. P. Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc. Natl Acad. Sci. USA 91, 10114–10118 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hocking, D. C., Smith, R. K. & McKeown-Longo, P. J. A novel role for the integrin-binding III-10 module in fibronectin matrix assembly. J. Cell Biol. 133, 431–444 (1996).

    CAS  PubMed  Google Scholar 

  94. Wu, C., Keivens, V. M., O'Toole, T. E., McDonald, J. A. & Ginsberg, M. H. Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell 83, 715–724 (1995).

    CAS  PubMed  Google Scholar 

  95. Halliday, N. L. & Tomasek, J. J. Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro. Exp. Cell Res. 217, 109–117 (1995).

    CAS  PubMed  Google Scholar 

  96. Zhong, C. et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141, 539–551 (1998).This paper links cell contractility regulated by Rho and stretch-induced exposure of cryptic assembly sites in fibronectin to provide mechanistic insight into matrix assembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sechler, M. S. et al. A novel fibronectin binding site required for fibronectin fibril growth during matrix assembly. J. Cell Biol. 154, 1081–1088 (2001).The latest publication in ongoing studies to identify the key binding sites in fibronectin, which points to repeating unit III 2 as particularly important for matrix assembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ohashi, T., Kiehart, D. P. & Erickson, H. P. Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. Proc. Natl Acad. Sci. USA 96, 2153–2158 (1999).The first paper to document stretching of fibronectin in living cells using green fluorescent protein (GFP).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    CAS  PubMed  Google Scholar 

  100. Smilenov, L. B., Mikhailov, A., Pelham, R. J., Marcantonio, E. E. & Gundersen, G. G. Focal adhesion motility revealed in stationary fibroblasts. Science 286, 1172–1174 (1999).

    CAS  PubMed  Google Scholar 

  101. Selve, N. & Wegner, A. Rate of treadmilling of actin filaments in vitro. J. Mol. Biol. 187, 627–631 (1986).

    CAS  PubMed  Google Scholar 

  102. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230 (1998).

    CAS  PubMed  Google Scholar 

  103. Small, J. V., Rottner, K., Kaverina, I. & Anderson, K. I. Assembling an actin cytoskeleton for cell attachment and movement. Biochim. Biophys. Acta 1404, 271–281 (1998).

    CAS  PubMed  Google Scholar 

  104. Lo, S. H., Janmey, P. A., Hartwig, J. H. & Chen, L. B. Interactions of tensin with actin and identification of its three distinct actin-binding domains. J. Cell Biol. 125, 1067–1075 (1994).

    CAS  PubMed  Google Scholar 

  105. Craig, D., Krammer, A., Schulten, K. & Vogel, V. Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc. Natl Acad. Sci. USA 98, 5590–5595 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Krammer, A., Lu, H., Isralewitz, B., Schulten, K. & Vogel, V. Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proc. Natl Acad. Sci. USA 96, 1351–1356 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. McKeown-Longo, P. J. & Mosher, D. F. Binding of plasma fibronectin to cell layers of human skin fibroblasts. J. Cell Biol. 97, 466–472 (1983).

    CAS  PubMed  Google Scholar 

  108. Langenbach, K. J. & Sottile, J. Identification of protein-disulfide isomerase activity in fibronectin. J. Biol. Chem. 274, 7032–7038 (1999).

    CAS  PubMed  Google Scholar 

  109. Teti, A., Marchisio, P. C. & Zallone, A. Z. Clear zone in osteoclast function: role of podosomes in regulation of bone-resorbing activity. Am. J. Physiol. 261, C1–C7 (1991).

    CAS  PubMed  Google Scholar 

  110. Danen, E. H., Sonneveld, P., Sonnenberg, A. & Yamada, K. M. Dual stimulation of Ras/mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor–stimulated cell cycle progression. J. Cell Biol. 151, 1413–1422 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Davies, P. F., Robotewskyj, A. & Griem, M. L. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J. Clin. Invest. 93, 2031–2038 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, K. D. et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J. Biol. Chem. 274, 18393–18400 (1999).

    CAS  PubMed  Google Scholar 

  113. Jalali, S. et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl Acad. Sci. USA 98, 1042–1046 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001).

    CAS  PubMed  Google Scholar 

  115. Muller, U. & Littlewood-Evans, A. Mechanisms that regulate mechanosensory hair cell differentiation. Trends Cell Biol. 11, 334–342 (2001).

    CAS  PubMed  Google Scholar 

  116. Nicklas, R. B., Campbell, M. S., Ward, S. C. & Gorbsky, G. J. Tension-sensitive kinetochore phosphorylation in vitro. J. Cell Sci. 111, 3189–3196 (1998).

    CAS  PubMed  Google Scholar 

  117. Bjorge, J. D., Jakymiw, A. & Fujita, D. J. Selected glimpses into the activation and function of Src kinase. Oncogene 19, 5620–5635 (2000).

    CAS  PubMed  Google Scholar 

  118. Ishikawa, H. et al. Structural conversion between open and closed forms of radixin: low-angle shadowing electron microscopy. J. Mol. Biol. 310, 973–978 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Figure 1a and b were kindly provided by E. Zamir, figure 1c by I. Grosheva and Figure 1d by J. Blair. B.G. is the incumbent of the E. Neter Chair in Cell and Tumor Biology, A.B. holds the J. Moss Chair of Biomedical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Geiger.

Related links

Related links

DATABASES

Interpro:

SH2 domain

 Locuslink:

14-3-3-β

α-actinin

ASAP1

calpain II

caveolin

dynamin

fibronectin

filamin

ILK

α4 integrin

α9 integrin

LAR

mDia1

PAK

PI3K

ponsin

ROCK

tensin

uPAR

VASP/Ena

 Swiss-Prot:

caldesmon

DOCK180

DRAL

dystroglycan

gelsolin

GRAF

α3 integrin

α5 integrin

α6 integrin

αv integrin

β1 integrin

β3 integrin

layilin

paxillin

SHIP-2

SHPS-1

SHP-2

syndecan-4

talin

vinculin

vinexin

vitronectin

Glossary

INTEGRINS

A group of heterodimeric transmembrane adhesion receptors for extracellular-matrix proteins such as fibronectin and vitronectin.

BASEMENT MEMBRANE

A dense, sheet-like, laminated extracellular matrix that separates epithelia, muscle, or other tissues from connective tissue.

LAMELLIPODIUM

A thin, flat extension at the cell periphery, which is filled with a branching meshwork of actin filaments.

RHO-FAMILY GTPASES

A family of monomeric G proteins — comprising Rho, Rac and Cdc42 — that are homologous to Ras. These are important molecular switches, which control cytoskeletal assembly and contraction.

MACROPHAGE

A white blood cell that is specialized for phagocytosis.

OSTEOCLAST

A specialized cell that is involved in active bone resorption.

FIBRONECTIN MODULES

Subunits of fibronectin are comprised of repeating structural modules of three types (I, II, III). Each module is encoded by one or two exons with introns that precisely separate repeats. There are 12 type I modules, each around 45 amino-acids long and clustered into three groups; two type 2 modules, each 60 amino acids-long; and 15–17 type III repeats, each about 90 amino-acids long (see Fig. 6).

BDM

(2,3-Butanedione monoxime) An inhibitor of myosin ATPase.

ML-7

(1-(5-iodonaphthalene-1-sulphonyl)-1-H-hexahydro-1, 4-diazepine) A kinase inhibitor thought to be relatively specific for myosin light-chain kinase.

H-7

(1-(5-isoquinolinylsulphonyl)-2-methylpiperazine) A broad-spectrum serine–threonine kinase inhibitor that blocks myosin light-chain kinase, Rho kinase and certain other kinases.

LASER TWEEZERS

Microscope-based device that traps micron-sized particles in a focused laser beam. Can be used to move or to stop such particles.

LEADING EDGE

The leading region of the advancing lamellipodium in a motile cell.

CELL-INDUCED SUBSTRATE WRINKLING

An approach for visualizing cellular contractility that is based on wrinkling of a thin and flexible silicone rubber film on which the cell is cultured.

MICRO-CANTILEVER TILTING DEVICE

A microscopic device in which cells are attached to a surface that consists of arrays of cantilevers. Local forces that are applied to this surface induce tilting of these cantilevers, which can be measured.

DEFORMATION OF ELASTIC GELS

Polymeric elastic gels that either contain impregnated beads or are surface micro-patterned are used as substrates for cultured cells. Local forces that are applied to these substrates can be measured, based on the distortion of these patterns.

CONNECTIVE TISSUES

Tissues that form the architectural framework of the vertebrate body. In these tissues, the extracellular matrix is plentiful and cells are sparsely distributed within it.

GRANULATION TISSUE

A contractile, myofibroblast-containing tissue formed in wounds.

ISOMETRIC TENSION

A condition in which contraction of muscle, non-muscle cells or the actomyosin network is opposed by an equal load that prevents net shortening, even though tension increases.

LATRUNCULIN-A

A macrolide that is derived from the Red Sea sponge Latrunculia magnifica, which binds and sequesters actin molecules, and thereby prevents the assembly of actin filaments.

TREADMILLING

A special state in polymer dynamics, when monomer addition at one end occurs at the same rate as monomer dissociation at the other end, which keeps the polymer length unchanged.

BARBED END

The fast-polymerizing end of actin filaments (defined by the arrowhead-shaped decoration of actin filaments with myosin fragments).

STEERED MOLECULAR DYNAMICS SIMULATION

A computer simulation method for studying force-induced reactions in biopolymers.

RGD ADHESION SEQUENCE

The primary adhesive motif in many extracellular matrix molecules, which contains the amino-acid triplet, Arg–Gly–Asp.

TRANSGLUTAMINASE

An enzyme (such as factor XIIIa) that helps to crosslink fibronectin and other molecules through isopeptide linkages.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiger, B., Bershadsky, A., Pankov, R. et al. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat Rev Mol Cell Biol 2, 793–805 (2001). https://doi.org/10.1038/35099066

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35099066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing