Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The development of neural stem cells

Abstract

The discovery of stem cells that can generate neural tissue has raised new possibilities for repairing the nervous system. A rush of papers proclaiming adult stem cell plasticity has fostered the notion that there is essentially one stem cell type that, with the right impetus, can create whatever progeny our heart, liver or other vital organ desires. But studies aimed at understanding the role of stem cells during development have led to a different view — that stem cells are restricted regionally and temporally, and thus not all stem cells are equivalent. Can these views be reconciled?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The location of neural stem cells.
Figure 2: The development of stem cells in the mammalian CNS.
Figure 3: Stem cells alter their responses to growth factors over time.
Figure 4: Can the stem cell lineage be reversed?

Similar content being viewed by others

References

  1. Temple, S. Division and differentiation of isolated CNS blast cells in microculture. Nature 340, 471–473 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Cattaneo, E. & McKay, R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347, 762–765 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Reynolds, B. A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574 (1992).

    Article  CAS  Google Scholar 

  4. Kilpatrick, T. J. & Bartlett, P. F. Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron 10, 255–265 (1993).

    Article  CAS  Google Scholar 

  5. Stemple, D. L. & Anderson, D. J. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71, 973–985 (1992).

    Article  CAS  Google Scholar 

  6. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Lois, C. & Alvarez-Buylla, A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl Acad. Sci. USA 90, 2074–2077 (1993).

    Article  ADS  CAS  Google Scholar 

  8. McKay, R. Stem cells in the central nervous system. Science 276, 66–71 (1997).

    Article  CAS  Google Scholar 

  9. Rao, M. S. Multipotent and restricted precursors in the central nervous system. Anat. Rec. 257, 137–148 (1999).

    Article  CAS  Google Scholar 

  10. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Capela, A. & Temple, S. A putative surface marker for adult mouse neural stem cells. Soc. Neurosci. Abstr. 24.19 〈http://sfn.scholarone.com/itin2000/〉 (2000).

  12. Kawaguchi, A. et al. Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol. Cell. Neurosci. 17, 259–273 (2001).

    Article  CAS  Google Scholar 

  13. Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA 97, 14720–14725 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Rietze, R. L. et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412, 736–739 (2001).

    Article  ADS  CAS  Google Scholar 

  15. Anderson, D. J. et al. Cell lineage determination and the control of neuronal identity in the neural crest. Cold Spring Harb. Symp. Quant. Biol. 62, 493–504 (1997).

    Article  CAS  Google Scholar 

  16. Kalyani, A., Hobson, K. & Rao, M. S. Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev. Biol. 186, 202–223 (1997).

    Article  CAS  Google Scholar 

  17. Kalyani, A. J., Piper, D., Mujtaba, T., Lucero, M. T. & Rao, M. S. Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J. Neurosci. 18, 7856–7868 (1998).

    Article  CAS  Google Scholar 

  18. Qian, X. et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69–80 (2000).

    Article  CAS  Google Scholar 

  19. He, W., Ingraham, C., Rising, L., Goderie, S. & Temple, S. Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J. Neurosci. (in the press).

  20. White, P. M. et al. Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals. Neuron 29, 57–71 (2001).

    Article  CAS  Google Scholar 

  21. Tropepe, V. et al. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol. 208, 166–188 (1999).

    Article  CAS  Google Scholar 

  22. Tropepe, V. et al. Direct neural fate specification from embryonic stem cells. A primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001).

    Article  CAS  Google Scholar 

  23. Wolpert, L. Positional information and pattern formation in development. Dev. Genet. 15, 485–490 (1994).

    Article  CAS  Google Scholar 

  24. Altmann, C. R. & Brivanlou, A. H. Neural patterning in the vertebrate embryo. Int. Rev. Cytol. 203, 447–482 (2001).

    Article  CAS  Google Scholar 

  25. Skeath, J. B. At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. BioEssays 21, 922–931 (1999).

    Article  CAS  Google Scholar 

  26. Tropepe, V., Hitoshi, S., Ekker, M. & van der Kooy, D. Neural stem cells and their progeny express region-specific gene in the developing CNS, but this expression is not irreversible and can be altered by local inductive cues. Soc. Neurosci. Abstr. 23.1 〈http://sfn.scholarone.com/itin2000/〉 (2000).

  27. Zappone, M. V. et al. Sox2 regulatory sequences direct expression of a β-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127, 2367–2382 (2000).

    CAS  PubMed  Google Scholar 

  28. Mujtaba, T., Mayer-Proschel, M. & Rao, M. S. A common neural progenitor for the CNS and PNS. Dev. Biol. 200, 1–15 (1998).

    Article  CAS  Google Scholar 

  29. Desai, A. R. & McConnell, S. K. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127, 2863–2872 (2000).

    CAS  Google Scholar 

  30. Barbe, M. F. & Levitt, P. The early commitment of fetal neurons to the limbic cortex. J. Neurosci. 11, 519–533 (1991).

    Article  CAS  Google Scholar 

  31. Olsson, M., Campbell, K. & Turnbull, D. H. Specification of mouse telencephalic and mid-hindbrain progenitors following heterotopic ultrasound-guided embryonic transplantation. Neuron 19, 761–772 (1997).

    Article  CAS  Google Scholar 

  32. Lim, D. A., Fishell, G. J. & Alvarez-Buylla, A. Postnatal mouse subventricular zone neuronal precursors can migrate and differentiate within multiple levels of the developing neuraxis. Proc. Natl Acad. Sci. USA 94, 14832–14836 (1997).

    Article  ADS  CAS  Google Scholar 

  33. Alvarez-Buylla, A., Herrera, D. G. & Wichterle, H. The subventricular zone: source of neuronal precursors for brain repair. Prog. Brain Res. 127, 1–11 (2000).

    Article  CAS  Google Scholar 

  34. Reh, T. A. & Levine, E. M. Multipotential stem cells and progenitors in the vertebrate retina. J. Neurobiol. 36, 206–220 (1998).

    Article  CAS  Google Scholar 

  35. Livesey, F. J. & Cepko, C. L. Vertebrate neural cell-fate determination: lessons from the retina. Nature Rev. Neurosci. 2, 109–118 (2001).

    Article  CAS  Google Scholar 

  36. Alvarez-Buylla, A., Garcia-Verdugo, J. M. & Tramontin, A. D. A unified hypothesis on the lineage of neural stem cells. Nature Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  Google Scholar 

  37. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  38. Shen, Q., Qian, X., Capela, A. & Temple, S. Stem cells in the embryonic cerebral cortex: their role in histogenesis and patterning. J. Neurobiol. 36, 162–174 (1998).

    Article  CAS  Google Scholar 

  39. Brody, T. & Odenwald, W. F. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol. 226, 34–44 (2000).

    Article  CAS  Google Scholar 

  40. Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001).

    Article  CAS  Google Scholar 

  41. Shihabuddin, L. S., Horner, P. J., Ray, J. & Gage, F. H. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 20, 8727–8735 (2000).

    Article  CAS  Google Scholar 

  42. Suhonen, J. O., Peterson, D. A., Ray, J. & Gage, F. H. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383, 624–627 (1996).

    Article  ADS  CAS  Google Scholar 

  43. Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000).

    Article  CAS  Google Scholar 

  44. Anderson, D. J. Stem cells and pattern formation in the nervous system. The possible versus the actual. Neuron 30, 19–35 (2001).

    Article  CAS  Google Scholar 

  45. Temple, S. Stem cell plasticity—building the brain of our dreams. Nature Neurosci. Rev. 2, 513–520 (2001).

    Article  CAS  Google Scholar 

  46. Durbec, P. & Rougon, G. Transplantation of mammalian olfactory progenitors into chick hosts reveals migration and differentiation potentials dependent on cell commitment. Mol. Cell. Neurosci. 17, 561–576 (2001).

    Article  CAS  Google Scholar 

  47. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  ADS  CAS  Google Scholar 

  48. Doetsch, F. K., Caille, I., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. EGF induces conversion of transit amplifying neurogenic precursors into multipotential invasive cells in the adult brain. Soc. Neurosci. Abstr. 894.4 〈http://sfn.scholarone.com/itin2001/〉 (2001).

  49. Fischer, A. J. & Reh, T. A. Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nature Neurosci. 4, 247–252 (2001).

    Article  CAS  Google Scholar 

  50. Goldowitz, D. Cell allocation in mammalian CNS formation: evidence from murine interspecies aggregation chimeras. Neuron 3, 705–713 (1989).

    Article  CAS  Google Scholar 

  51. Tan, S. S. et al. Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21, 295–304 (1998).

    Article  CAS  Google Scholar 

  52. Brustle, O. et al. In vitro-generated neural precursors participate in mammalian brain development. Proc. Natl Acad. Sci. USA 94, 14809–14814 (1997).

    Article  ADS  CAS  Google Scholar 

  53. Winkler, C. et al. Incorporation and glial differentiation of mouse EGF-responsive neural progenitor cells after transplantation into the embryonic rat brain. Mol. Cell. Neurosci. 11, 99–116 (1998).

    Article  CAS  Google Scholar 

  54. Brustle, O. et al. Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nature Biotechnol. 16, 1040–1044 (1998).

    Article  CAS  Google Scholar 

  55. Flax, J. D. et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nature Biotechnol. 16, 1033–1039 (1998).

    Article  CAS  Google Scholar 

  56. Brustle, O., Maskos, U. & McKay, R. D. Host-guided migration allows targeted introduction of neurons into the embryonic brain. Neuron 15, 1275–1285 (1995).

    Article  CAS  Google Scholar 

  57. Campbell, K., Olsson, M. & Bjorklund, A. Regional incorporation and site-specific differentiation of striatal precursors transplanted to the embryonic forebrain ventricle. Neuron 15, 1259–1273 (1995).

    Article  CAS  Google Scholar 

  58. Betarbet, R., Zigova, T., Bakay, R. A. & Luskin, M. B. Migration patterns of neonatal subventricular zone progenitor cells transplanted into the neonatal striatum. Cell Transplant. 5, 165–178 (1996).

    Article  CAS  Google Scholar 

  59. Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).

    Article  ADS  CAS  Google Scholar 

  60. Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

    Article  ADS  CAS  Google Scholar 

  61. Herrera, D. G., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Adult-derived neural precursors transplanted into multiple regions in the adult brain. Ann. Neurol. 46, 867–877 (1999).

    Article  CAS  Google Scholar 

  62. Gage, F. H. et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl Acad. Sci. USA 92, 11879–11883 (1995).

    Article  ADS  CAS  Google Scholar 

  63. Pagano, S. F. et al. Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem Cells 18, 295–300 (2000).

    Article  CAS  Google Scholar 

  64. Tropepe, V. et al. Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036 (2000).

    Article  ADS  CAS  Google Scholar 

  65. Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C. & Steindler, D. A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl Acad. Sci. USA 97, 13883–13888 (2000).

    Article  ADS  CAS  Google Scholar 

  66. Zhu, G., Mehler, M. F., Mabie, P. C. & Kessler, J. A. Developmental changes in progenitor cell responsiveness to cytokines. J. Neurosci. Res. 56, 131–145 (1999).

    Article  CAS  Google Scholar 

  67. Gritti, A. et al. Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J. Neurosci. 19, 3287–3297 (1999).

    Article  CAS  Google Scholar 

  68. Burrows, R. C., Wancio, D., Levitt, P. & Lillien, L. Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19, 251–267 (1997).

    Article  CAS  Google Scholar 

  69. Lillien, L. & Raphael, H. BMP and FGF regulate the development of EGF-responsive neural progenitor cells. Development 127, 4993–5005 (2000).

    CAS  Google Scholar 

  70. Qian, X., Davis, A. A., Goderie, S. K. & Temple, S. FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18, 81–93 (1997).

    Article  CAS  Google Scholar 

  71. Li, W., Cogswell, C. A. & LoTurco, J. J. Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J. Neurosci. 18, 8853–8862 (1998).

    Article  CAS  Google Scholar 

  72. Li, W. & LoTurco, J. J. Noggin is a negative regulator of neuronal differentiation in developing neocortex. Dev. Neurosci. 22, 68–73 (2000).

    Article  Google Scholar 

  73. Mehler, M. F., Mabie, P. C., Zhu, G., Gokhan, S. & Kessler, J. A. Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev. Neurosci. 22, 74–85 (2000).

    Article  CAS  Google Scholar 

  74. Lim, D. A. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).

    Article  CAS  Google Scholar 

  75. Kirschstein, R. & Skirboll, L. R. Stem Cells: Scientific Progress and Future Research Directions (NIH, Bethesda, 2001).

    Google Scholar 

Download references

Acknowledgements

I thank Q. Shen for her help with Table 1 and for invaluable discussions; K. Kirchofer for preparing the manuscript; and S. Dunnett for summarizing the potential therapeutic applications of stem cells in Box 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Temple.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001). https://doi.org/10.1038/35102174

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35102174

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing