Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes

Abstract

The transcription of eukaryotic protein-coding genes involves complex regulation of RNA polymerase (Pol) II activity in response to physiological conditions and developmental cues. One element of this regulation involves phosphorylation of the carboxy-terminal domain (CTD) of the largest polymerase subunit by a transcription elongation factor, P-TEFb, which comprises the kinase CDK9 and cyclin T1 or T2 (ref. 1). Here we report that in human HeLa cells more than half of the P-TEFb is sequestered in larger complexes that also contain 7SK RNA, an abundant, small nuclear RNA (snRNA) of hitherto unknown function2,3. P-TEFb and 7SK associate in a specific and reversible manner. In contrast to the smaller P-TEFb complexes, which have a high kinase activity, the larger 7SK/P-TEFb complexes show very weak kinase activity. Inhibition of cellular transcription by chemical agents or ultraviolet irradiation trigger the complete disruption of the P-TEFb/7SK complex, and enhance CDK9 activity. The transcription-dependent interaction of P-TEFb with 7SK may therefore contribute to an important feedback loop modulating the activity of RNA Pol II.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and functional characterization of human CDK9, cyclin T1 and cyclin T2 complexes.
Figure 2: The large complexes of CDK9/cyclin T1 or T2 contain 7SK.
Figure 3: Transcription inhibition promotes disruption of the 7SK/CDK9/cyclin T complexes.

Similar content being viewed by others

References

  1. Price, D. H. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell. Biol. 20, 2629–2634 (2000).

    Article  CAS  Google Scholar 

  2. Zieve, G. & Penman, S. Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell 8, 19–31 (1976).

    Article  CAS  Google Scholar 

  3. Wassarman, D. A. & Steitz, J. A. Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol. Cell. Biol. 11, 3432–3445 (1991).

    Article  CAS  Google Scholar 

  4. Dahmus, M. E. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271, 19009–19012 (1996).

    Article  CAS  Google Scholar 

  5. Corden, J. L. & Patturajan, M. A CTD function linking transcription to splicing. Trends Biochem. Sci. 22, 413–416 (1997).

    Article  CAS  Google Scholar 

  6. Hirose, Y. & Manley, J. L. RNA polymerase II and the integration of nuclear events. Genes Dev. 14, 1415–1429 (2000).

    CAS  PubMed  Google Scholar 

  7. Bentley, D. Coupling RNA polymerase II transcription with pre-mRNA processing. Curr. Opin. Cell. Biol. 11, 347–351 (1999).

    Article  CAS  Google Scholar 

  8. Cassé, C., Giannoni, F., Nguyen, V. T., Dubois, M.-F. & Bensaude, O. The transcriptional inhibitors, actinomycin D and α-amanitin, activate the HIV-1 promoter and favor phosphorylation of the RNA polymerase II C-terminal domain. J. Biol. Chem. 274, 16097–16106 (1999).

    Article  Google Scholar 

  9. Garriga, J., Mayol, X. & Grana, X. The CDC2-related kinase PITALRE is the catalytic subunit of active multimeric protein complexes. Biochem. J. 319, 293–298 (1996).

    Article  CAS  Google Scholar 

  10. Ramanathan, Y., Reza, S. M., Young, T. M., Mathews, M. B. & Pe'ery, T. Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 Tat and carboxy-terminal domain substrate. J. Virol. 73, 5448–5458 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Devault, A. et al. MAT1 (‘ménage à trois’) a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK. EMBO J. 14, 5027–5036 (1995).

    Article  CAS  Google Scholar 

  12. Svejstrup, J. Q., Vichi, P. & Egly, J.-M. The multiple roles of transcription/repair factor TFIIH. Trends Biochem. Sci. 21, 346–350 (1996).

    Article  CAS  Google Scholar 

  13. Marshall, N. F. & Price, D. H. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 270, 12335–12338 (1995).

    Article  CAS  Google Scholar 

  14. O'Keeffe, B., Fong, Y., Chen, D., Zhou, S. & Zhou, Q. Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated Tat stimulation of HIV-1 transcription. J. Biol. Chem. 275, 279–287 (2000).

    Article  CAS  Google Scholar 

  15. Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51 (1999).

    Article  CAS  Google Scholar 

  16. Rockx, D. A. et al. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc. Natl Acad. Sci. USA 97, 10503–10508 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Egyházi, E. Initiation inhibition and reinitiation of the synthesis of heterogenous nuclear RNA in living cells. Nature 262, 319–321 (1976).

    Article  ADS  Google Scholar 

  18. Garber, M. E. & Jones, K. A. HIV-1 Tat: coping with negative elongation factors. Curr. Opin. Immunol. 11, 460–465 (1999).

    Article  CAS  Google Scholar 

  19. Valerie, K. A. et al. Activation of human immunodefiency virus type 1 by DNA damage in human cells. Nature 333, 78–81 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Brown, E. J. & Schreiber, S. L. A signalling pathway to translational control. Cell 86, 517–520 (1996).

    Article  CAS  Google Scholar 

  21. Khaleghpour, K., Pyronnet, S., Gingras, A.-C. & Sonenberg, N. Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-Binding Protein 1 and p70 S6 kinase activities. Mol. Cell. Biol. 19, 4302–4310 (1999).

    Article  CAS  Google Scholar 

  22. Ignotz, G. G., Hokari, S., DePhilip, R. M., Tsukada, K. & Lieberman, I. Lodish model and regulation of ribosomal protein synthesis by insulin-deficient chick embryo fibroblasts. Biochemistry 20, 2550–2558 (1981).

    Article  CAS  Google Scholar 

  23. Nielsen, F. C., Ostergaard, L., Nielsen, J. & Christiansen, J. Growth-dependent translation of IGF-II mRNA by a rapamycin-sensitive pathway. Nature 377, 358–362 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Montzka Wassarman, K. & Storz, G. 6S RNA regulates E. coli RNA polymerase activity. Cell 101, 613–623 (2000).

    Article  Google Scholar 

  25. Goodall, G. J., Wiebauer, K. & Filipowicz, W. Analysis of pre-mRNA processing in transfected plant protoplasts. Methods Enzymol. 181, 148–161 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Agence Nationale de Recherche sur le Sida, Association pour la Recherche sur le Cancer, the Ligue Nationale Contre le Cancer (Comité de Paris), the France-Berkeley fund and a Federation of European Biochemical Societies fellowship to A.A.M. We thank P. Ascher, M.-F. Dubois, D. H. Price and all members of the Groupe de Biologie Cellulaire de la Transcription for help and discussions, and Z. Yang and Q. Zhou for communicating their work before publication and providing the G3H cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bensaude.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, V., Kiss, T., Michels, A. et al. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414, 322–325 (2001). https://doi.org/10.1038/35104581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35104581

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing