Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The promise of retinoids to fight against cancer

Key Points

  • Retinoids and rexinoids exert their action by signalling through nuclear receptor heterodimers that can activate or silence specific gene networks.

  • The most widely studied retinoid, all-trans retinoic acid (ATRA), causes differentiation of acute promyelocytic leukaemia (APL) cells through activation of the retinoid receptor RARα, but RARβ and rexinoid receptors (RXRs) might also be responsible for some of the antitumour activity of retinoids.

  • Crosstalk with other transcription factors, particularly AP1 (FOS–JUN), might account for some of the antitumour activity of retinoids.

  • In humans, pharmacological doses of ATRA cause differentiation of APL cells that contain the PML–RARα fusion protein, but clinical data indicate that retinoids might also be useful for the treatment of other human cancers.

  • As well as activating differentiation, retinoids can also activate tumour-specific death signalling pathways; these contribute to the efficacy of retinoid therapy.

  • Retinoids are cancer preventive and their use has been approved for the treatment of several precancerous conditions.

Abstract

Retinoids have a reputation for being both detrimental and beneficial: they are teratogens, but they also have tumour-suppressive capacity. Cell biology and genetics have significantly improved our understanding of the mechanisms that underlie the anti-proliferative action of retinoids. Recent elucidation of the pathways that are activated by retinoids will help us to exploit the beneficial aspects of this powerful class of compounds for cancer therapy and prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of transcriptional repression and activation by RAR–RXR heterodimers.
Figure 2: Retinoids and rexinoids can interfere with events leading to tumorigenesis at several levels.
Figure 3: Molecular basis of retinoid responsivity and non-responsivity in APL cells.
Figure 4: Retinoids affect TRAIL-mediated death signalling at several levels.

Similar content being viewed by others

References

  1. Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genet. 21, 444–448 (1999).Targeted gene disruption shows that production of retinoic acid by the retinaldehyde dehydrogenase-2 (Raldh2) enzyme is required for mouse embryo survival and early morphogenesis.

    Article  CAS  PubMed  Google Scholar 

  2. de Urquiza, A. M. et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290, 2140–2144 (2000).Identification of brain-derived docosahexaenoic acid as an RXR ligand.

    Article  CAS  PubMed  Google Scholar 

  3. Krezel, W. et al. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 279, 863–867 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Kastner, P. et al. Abnormal spermatogenesis in RXRβ mutant mice. Genes Dev. 10, 80–92 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Massaro, G. D. et al. Retinoic acid receptor-β: an endogenous inhibitor of the perinatal formation of pulmonary alveoli. Physiol. Genomics 4, 51–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Wan, Y. J. et al. Hepatocyte-specific mutation establishes retinoid X receptor-α as a heterodimeric integrator of multiple physiological processes in the liver. Mol. Cell Biol. 20, 4436–4444 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Imai, T., Jiang, M., Kastner, P., Chambon, P. & Metzger, D. Selective ablation of retinoid X receptor-α in hepatocytes impairs their lifespan and regenerative capacity. Proc. Natl Acad. Sci. USA 98, 4581–4586 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dupe, V. et al. Essential roles of retinoic acid signaling in interdigital apoptosis and control of BMP-7 expression in mouse autopods. Dev. Biol. 208, 30–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Altucci, L. et al. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand trail. Nature Med. 7, 680–686 (2001).Retinoic-acid therapy of acute promyelocytic leukaemia involves induction of cell differentiation linked to early-induced anti-apoptotic gene programming, which is followed by post-differentiation apoptosis caused by activation of the TRAIL signalling pathway.

    Article  CAS  PubMed  Google Scholar 

  10. Kastner, P. et al. Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development 124, 313–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, J. Y. et al. RAR-specific agonist/antagonists which dissociate transactivation and AP1 transrepression inhibit anchorage-independent cell proliferation. EMBO J. 14, 1187–1197 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arnhold, T., Tzimas, G., Wittfoht, W., Plonait, S. & Nau, H. Identification of 9-cis-retinoic acid, 9,13-di-cis-retinoic acid, and 14-hydroxy-4,14-retro-retinol in human plasma after liver consumption. Life Sci. 59, L169–L177 (1996).

    Article  Google Scholar 

  13. Buck, J., Derguini, F., Levi, E., Nakanishi, K. & Hammerling, U. Intracellular signaling by 14-hydroxy-4,14-retro-retinol. Science 254, 1654–1656 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Bourguet, W. et al. Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol. Cell 5, 289–298 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Jepsen, K. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102, 753–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Bourguet, W., Germain, P. & Gronemeyer, H. Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol. Sci. 21, 381–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Glass, C. K. & Rosenfeld, M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    CAS  PubMed  Google Scholar 

  18. Rachez, C. & Freedman, L. P. Mediator complexes and transcription. Curr. Opin. Cell Biol. 13, 274–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Ito, M. & Roeder, R. G. The TRAP/SMCC/mediator complex and thyroid hormone receptor function. Trends Endocrinol. Metab. 12, 127–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Benoit, G. et al. RAR-independent RXR signaling induces t(15;17) leukemia cell maturation. EMBO J. 18, 7011–7018 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benoit, G. R. et al. Autonomous rexinoid death signaling is suppressed by converging signaling pathways in immature leukemia cells. Mol. Endocrinol. 15, 1154–1169 (2001).Together with reference 20 , this is the first demonstration of autonomous rexinoid signalling.

    Article  CAS  PubMed  Google Scholar 

  22. Kastner, P., Mark, M. & Chambon, P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83, 859–869 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Pasqualetti, M., Neun, R., Davenne, M. & Rijli, F. M. Retinoic acid rescues inner ear defects in Hoxa1 deficient mice. Nature Genet. 29, 34–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Fisher, G. J. & Voorhees, J. J. Molecular mechanisms of retinoid actions in skin. FASEB J. 10, 1002–1013 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Massaro, G. D. & Massaro, D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nature Med. 3, 675–677 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Gerster, H. Vitamin A: functions, dietary requirements and safety in humans. Int. J. Vitam. Nutr. Res. 67, 71–90 (1997).

    CAS  PubMed  Google Scholar 

  27. Corcoran, J. & Maden, M. Nerve growth factor acts via retinoic acid synthesis to stimulate neurite outgrowth. Nature Neurosci. 2, 307–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Mollard, R., Ghyselinck, N. B., Wendling, O., Chambon, P. & Mark, M. Stage-dependent responses of the developing lung to retinoic acid signaling. Int. J. Dev. Biol. 44, 457–462 (2000).

    CAS  PubMed  Google Scholar 

  29. Widschwendter, M. et al. Methylation and silencing of the retinoic acid receptor-β2 gene in breast cancer. J. Natl Cancer Inst. 92, 826–832 (2000).Studies in breast cancer cell lines and patient biopsies indicate that methylation of the RARβ2 gene might be an initial step in breast carcinogenesis. This study indicates that treatment with demethylating agents followed by retinoic acid might offer a new therapeutic modality.

    Article  CAS  PubMed  Google Scholar 

  30. Bovenzi, V. & Momparler, R. L. Antineoplastic action of 5-aza-2′-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor-β and estrogen receptor-α genes in breast carcinoma cells. Cancer Chemother. Pharmacol. 48, 71–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, B. et al. Orphan receptor COUP-TF is required for induction of retinoic acid receptor-β, growth inhibition, and apoptosis by retinoic acid in cancer cells. Mol. Cell Biol. 20, 957–970 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wong, C. W. & Privalsky, M. L. Transcriptional silencing is defined by isoform- and heterodimer-specific interactions between nuclear hormone receptors and corepressors. Mol. Cell Biol. 18, 5724–5733 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Germain, P., Iyer, J., Zechel, C. & Gronemeyer, H. Coregulator recruitment and the mechanism of retinoic acid receptor synergy. Nature (in the press).

  34. Lin, F., Xiao, D., Kolluri, S. K. & Zhang, X. Unique anti-activator protein-1 activity of retinoic acid receptor-β. Cancer Res. 60, 3271–3280 (2000).

    CAS  PubMed  Google Scholar 

  35. Dong, Z., Birrer, M. J., Watts, R. G., Matrisian, L. M. & Colburn, N. H. Blocking of tumor promoter-induced AP-1 activity inhibits induced transformation in JB6 mouse epidermal cells. Proc. Natl Acad. Sci. USA 91, 609–613 (1994).Retinoic acid inhibits TPA-induced transformation and anchorage-independent cell growth in the dose range that blocks TPA-induced AP-1 activity, indicating (as in reference 11 ) that its prevention of tumour promotion might occur through inhibition of AP1 activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Greenhalgh, D. A., Welty, D. J., Player, A. & Yuspa, S. H. Two oncogenes, v-fos and v-ras, cooperate to convert normal keratinocytes to squamous cell carcinoma. Proc. Natl Acad. Sci. USA 87, 643–647 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leder, A., Kuo, A., Cardiff, R. D., Sinn, E. & Leder, P. v-Ha-ras transgene abrogates the initiation step in mouse skin tumorigenesis: effects of phorbol esters and retinoic acid. Proc. Natl Acad. Sci. USA 87, 9178–9182 (1990).A transgenic mouse strain carrying the activated v- HRAS oncogene developed papillomas, some of which went on to develop squamous-cell carcinomas and, more frequently, sarcomas, following treatment with the tumour promoter TPA. Retinoic acid markedly delayed, reduced and often completely inhibited the appearance of TPA-induced papillomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Göttlicher, M., Heck, S. & Herrlich, P. Transcriptional cross-talk, the second mode of steroid hormone receptor action. J. Mol. Med. 76, 480–489 (1998).

    Article  PubMed  Google Scholar 

  39. Resche-Rigon, M. & Gronemeyer, H. Therapeutic potential of selective modulators of nuclear receptor action. Curr. Opin. Chem. Biol. 2, 501–507 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Fanjul, A. et al. A new class of retinoids with selective inhibition of AP-1 inhibits proliferation. Nature 372, 107–111 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, J. Y. et al. Two distinct actions of retinoid-receptor ligands. Nature 382, 819–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Nagy, L. et al. Activation of retinoid X receptors induces apoptosis in HL-60 cell lines. Mol. Cell Biol. 15, 3540–3551 (1995).Original demonstration that RXR activity is required to induce apoptosis in this cell system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, M. et al. Skin abnormalities generated by temporally controlled RXRα mutations in mouse epidermis. Nature 407, 633–636 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Sun, S. Y. et al. Identification of receptor-selective retinoids that are potent inhibitors of the growth of human head and neck squamous cell carcinoma cells. Clin. Cancer Res. 6, 1563–1573 (2000).

    CAS  PubMed  Google Scholar 

  45. Gottardis, M. M. et al. Chemoprevention of mammary carcinoma by lGD1069 (targretin): An RXR-selective ligand. Cancer Res. 56, 5566–5570 (1996).A 90% reduction in tumour burden and tumour incidence by rexinoid treatment in a methylnitrosurea-induced rat mammary carcinoma model. Chronic rexinoid therapy showed no signs of 'retinoid-associated' toxicities.

    CAS  PubMed  Google Scholar 

  46. Agarwal, V. R., Bischoff, E. D., Hermann, T. & Lamph, W. W. Induction of adipocyte-specific gene expression is correlated with mammary tumor regression by the retinoid X receptor-ligand lGD1069 (targretin). Cancer Res. 60, 6033–6038 (2000).

    CAS  PubMed  Google Scholar 

  47. Gamage, S. D. et al. Efficacy of lGD1069 (targretin), a retinoid X receptor-selective ligand, for treatment of uterine leiomyoma. J. Pharmacol. Exp. Ther. 295, 677–681 (2000).

    CAS  PubMed  Google Scholar 

  48. Miller, V. A. et al. Initial clinical trial of a selective retinoid X receptor ligand, lGD1069. J. Clin. Oncol. 15, 790–795 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Holmes, W. F., Dawson, M. I., Soprano, R. D. & Soprano, K. J. Induction of apoptosis in ovarian carcinoma cells by AHPN/CD437 is mediated by retinoic acid receptors. J. Cell Physiol. 185, 61–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Sun, S. Y., Yue, P., Hong, W. K. & Lotan, R. Augmentation of tumor necrosis factor-related apoptosis-inducing ligand (trail)-induced apoptosis by the synthetic retinoid 6-[3-(1-adamantyl)- 4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) through up-regulation of trail receptors in human lung cancer cells. Cancer Res. 60, 7149–7155 (2000).TRAIL receptor upregulation by an atypical retinoid.

    CAS  PubMed  Google Scholar 

  51. Sun, S. Y., Yue, P., Hong, W. K. & Lotan, R. Induction of FAS expression and augmentation of FAS/FAS ligand-mediated apoptosis by the synthetic retinoid CD437 in human lung cancer cells. Cancer Res. 60, 6537–6543 (2000).

    CAS  PubMed  Google Scholar 

  52. Dawson, M. I. et al. Apoptosis induction in cancer cells by a novel analogue of 6-[3-(1- adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid lacking retinoid receptor transcriptional activation activity. Cancer Res. 61, 4723–4730 (2001).

    CAS  PubMed  Google Scholar 

  53. Li, H. et al. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289, 1159–1164 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Sakaue, M., Adachi, H., Dawson, M. & Jetten, A. M. Induction of EGR-1 expression by the retinoid AHPN in human lung carcinoma cells is dependent on activated ERK1/2. Cell Death Differ. 8, 411–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, Y., Buck, J. & Derguini, F. Anhydroretinol induces oxidative stress and cell death. Cancer Res. 59, 3985–3990 (1999).

    CAS  PubMed  Google Scholar 

  56. Pandolfi, P. P. Oncogenes and tumor suppressors in the molecular pathogenesis of acute promyelocytic leukemia. Hum. Mol. Genet. 10, 769–775 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. He, L. Z. et al. Distinct interactions of PML–RARα and PLZF–RARα with co-repressors determine differential responses to RA in APL. Nature Genet. 18, 126–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Lin, R. J. et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391, 811–814 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Grignani, F. et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature 391, 815–818 (1998).References 57–59 show that aberrant corepressor interaction of the APL oncofusion proteins leads to stabilization of the HDAC complex and, therefore, enhanced silencing of target genes. Retinoic acid can dissociate the HDAC complex from PML–RARα but not PLZF–RARα, as the latter contains an additional corepressor-binding surface.

    Article  CAS  PubMed  Google Scholar 

  60. Minucci, S. et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol. Cell 5, 811–820 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Perez, A. et al. PML–RAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. EMBO J. 12, 3171–3182 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, R. J. & Evans, R. M. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol. Cell 5, 821–830 (2000).References 60–62 show that oligomerization of PML–RARα accounts for its aberrant recruitment of HDAC-containing corepressor complexes.

    Article  CAS  PubMed  Google Scholar 

  63. Guo, A. et al. The function of PML in p53-dependent apoptosis. Nature Cell Biol. 2, 730–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic RAS. Nature 406, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Zhong, S. et al. Role of SUMO-1-modified PML in nuclear body formation. Blood 95, 2748–2752 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Zhong, S., Salomoni, P. & Pandolfi, P. P. The transcriptional role of PML and the nuclear body. Nature Cell Biol. 2, E85–E90 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Khan, M. M. et al. Role of PML and PML–RARα in MAD-mediated transcriptional repression. Mol. Cell 7, 1233–1243 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Cheng, G. X. et al. Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF–RARα and NPM–RARα. Proc. Natl Acad. Sci. USA 96, 6318–6323 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lallemand-Breitenbach, V. et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor-α degradation. J. Exp. Med. 193, 1361–1372 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. French, L. E. & Tschopp, J. The trail to selective tumor death. Nature Med. 5, 146–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Fenaux, P., Chomienne, C. & Degos, L. All-trans retinoic acid and chemotherapy in the treatment of acute promyelocytic leukemia. Semin. Hematol. 38, 13–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Zelent, A. Hot on the trail of acute promyelocytic leukemia. Nature Med. 7, 662–664 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Bonavida, B., Ng, C. P., Jazirehi, A., Schiller, G. & Mizutani, Y. Selectivity of TRAIL-mediated apoptosis of cancer cells and synergy with drugs: the trail to non-toxic cancer therapeutics. Int. J. Oncol. 15, 793–802 (1999).

    CAS  PubMed  Google Scholar 

  74. Marks, P. A., Richon, V. M. & Rifkind, R. A. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl Cancer Inst. 92, 1210–1216 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Warrell, R. P. Jr, He, L. Z., Richon, V., Calleja, E. & Pandolfi, P. P. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J. Natl Cancer Inst. 90, 1621–1625 (1998).First report of complete clinical and cytogenetic remission of a relapsed APL patient by treatment with all- trans -retinoic acid in combination with the HDAC inhibitor sodium phenylbutyrate.

    Article  CAS  PubMed  Google Scholar 

  76. Novogrodsky, A. et al. Effect of polar organic compounds on leukemic cells. Butyrate-induced partial remission of acute myelogenous leukemia in a child. Cancer 51, 9–14 (1983).

    Article  CAS  PubMed  Google Scholar 

  77. Minucci, S., Nervi, C., Lo Coco, F. & Pelicci, P. G. Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias? Oncogene 20, 3110–3115 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Ferrara, F. F. et al. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res. 61, 2–7 (2001).Restoration of retinoic acid-induced differentiation in non-APL AML blasts by co-treatment with an HDAC inhibitor.

    PubMed  Google Scholar 

  79. Cote, S. et al. Altered ligand binding and transcriptional regulation by mutations in the PML/RARα ligand-binding domain arising in retinoic acid-resistant patients with acute promyelocytic leukemia. Blood 96, 3200–3208 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Hong, W. K. & Itri, L. M. in The Retinoids: Biology, Chemistry and Medicine (eds Sporn, M. B., Roberts, A. B. & Goodman, D. S.) 597–658 (Raven, New York, 1994).

    Google Scholar 

  81. Moon, R. C., Mehta, R. G. & Rao, K. J. V. N. in The Retinoids (eds Sporn, M. B., Roberts, A. B. & Goodman, D. S.) 573–595 (Raven, New York, 1994).

    Google Scholar 

  82. Gong, B. & Almasan, A. Genomic organization and transcriptional regulation of human APO2/TRAIL gene. Biochem. Biophys. Res. Commun. 278, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Ma, X. et al. Regulation of interferon and retinoic acid-induced cell death activation through thioredoxin reductase. J. Biol. Chem. 276, 24843–24854 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. List, H. J. et al. Ribozyme targeting demonstrates that the nuclear receptor coactivator AIB1 is a rate-limiting factor for estrogen-dependent growth of human MCF-7 breast cancer cells. J. Biol. Chem. 276, 23763–23768 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Bubulya, A., Wise, S. C., Shen, X. Q., Burmeister, L. A. & Shemshedini, L. c-JUN can mediate androgen receptor-induced transactivation. J. Biol. Chem. 271, 24583–24589 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Pearce, D., Matsui, W., Miner, J. N. & Yamamoto, K. R. Glucocorticoid receptor transcriptional activity determined by spacing of receptor and nonreceptor DNA sites. J. Biol. Chem. 273, 30081–30085 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Caelles, C., Gonzalez-Sancho, J. M. & Munoz, A. Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev. 11, 3351–3364 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rogatsky, I., Logan, S. K. & Garabedian, M. J. Antagonism of glucocorticoid receptor transcriptional activation by the c-JUN N-terminal kinase. Proc. Natl Acad. Sci. USA 95, 2050–2055 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhou, X. F., Shen, X. Q. & Shemshedini, L. Ligand-activated retinoic acid receptor inhibits AP-1 transactivation by disrupting c-JUN/c-FOS dimerization. Mol. Endocrinol. 13, 276–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Mann, K. K., Shao, W. & Miller, W. H. Jr. The biology of acute promyelocytic leukemia. Curr. Oncol. Rep. 3, 209–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Branchet, M. C. et al. Topical tretinoin in the treatment of lichen planus and leukoplakia of the oral mucosa. A biochemical evaluation of the keratinization. Ann. Dermatol. Venereol. 121, 464–469 (1994).

    CAS  PubMed  Google Scholar 

  93. Boisnic, S. et al. Topical tretinoin in the treatment of lichen planus and leukoplakia of the mouth mucosa. A clinical evaluation. Ann. Dermatol. Venereol. 121, 459–463 (1994).

    CAS  PubMed  Google Scholar 

  94. Peck, G. L. Topical tretinoin in actinic keratosis and basal cell carcinoma. J. Am. Acad. Dermatol. 15, 829–835 (1986).

    Article  CAS  PubMed  Google Scholar 

  95. Meyskens, F. L. Jr, et al. Enhancement of regression of cervical intraepithelial neoplasia II (moderate dysplasia) with topically applied all-trans-retinoic acid: a randomized trial. J. Natl Cancer Inst. 86, 539–543 (1994).

    Article  PubMed  Google Scholar 

  96. Schmutzler, C. & Kohrle, J. Retinoic acid redifferentiation therapy for thyroid cancer. Thyroid 10, 393–406 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Grunwald, F. et al. Redifferentiation therapy-induced radioiodine uptake in thyroid cancer. J. Nucl. Med. 39, 1903–1906 (1998).

    CAS  PubMed  Google Scholar 

  98. Grunwald, F. et al. Redifferentiation therapy with retinoic acid in follicular thyroid cancer. J. Nucl. Med. 39, 1555–1558 (1998).

    CAS  PubMed  Google Scholar 

  99. Kelly, W. K. et al. The development of biologic end points in patients treated with differentiation agents: an experience of retinoids in prostate cancer. Clin. Cancer Res. 6, 838–846 (2000).

    CAS  PubMed  Google Scholar 

  100. Dezube, B. J. AIDS-related Kaposi sarcoma: the role of local therapy for a systemic disease. Arch. Dermatol. 136, 1554–1556 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Duvic, M. et al. Topical treatment of cutaneous lesions of acquired immunodeficiency syndrome-related Kaposi sarcoma using alitretinoin gel: results of phase I and II trials. Arch. Dermatol. 136, 1461–1469 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Mitsuyasu, R. T. AIDS-related Kaposi's sarcoma: current treatment options, future trends. Oncology 14, 867–878 (2000).

    CAS  PubMed  Google Scholar 

  103. Von Roenn, J. H. & Cianfrocca, M. Treatment of Kaposi's sarcoma. Cancer Treat. Res. 104, 127–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Somos, S. & Farkas, B. Immunomodulatory treatment with low-dose interferon-α and oral retinoic acid in lymphangioma-like Kaposi's sarcoma. Anticancer Res. 20, 541–545 (2000).

    CAS  PubMed  Google Scholar 

  105. Lawrence, J. A. et al. Phase I clinical trial of alitretinoin and tamoxifen in breast cancer patients: toxicity, pharmacokinetic, and biomarker evaluations. J. Clin. Oncol. 19, 2754–2763 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Miller, W. H. Jr, et al. A phase I–II study of 9-cis retinoic acid and interferon-α2b in patients with advanced renal-cell carcinoma: an NCIC clinical trials group study. Ann. Oncol. 11, 1387–1389 (2000).

    Article  PubMed  Google Scholar 

  107. Motzer, R. J. et al. Phase III trial of interferon α-2a with or without 13-cis-retinoic acid for patients with advanced renal cell carcinoma. J. Clin. Oncol. 18, 2972–2980 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Kurie, J. M. et al. Phase I trial of 9-cis retinoic acid in adults with solid tumors. Clin. Cancer Res. 2, 287–293 (1996).

    CAS  PubMed  Google Scholar 

  109. DiGiovanna, J. J. Retinoid chemoprevention in patients at high risk for skin cancer. Med. Pediatr. Oncol. 36, 564–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. DiGiovanna, J. J. Systemic retinoid therapy. Dermatol. Clin. 19, 161–167 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Lee, J. J. et al. Predicting cancer development in oral leukoplakia: ten years of translational research. Clin. Cancer Res. 6, 1702–1710 (2000).First comprehensive tool for assessing cancer risk of patients with oral premalignant lesions. It incorporates medical/demographic variables, epidemiological factors, and cellular and molecular biomarkers.

    CAS  PubMed  Google Scholar 

  112. Beenken, S. W. et al. Transforming growth factor-α (TGF-α) expression in dysplastic oral leukoplakia: modulation by 13-cis retinoic acid. Head Neck 21, 566–573 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Toma, S., Mangiante, P. E., Margarino, G., Nicolo, G. & Palumbo, R. Progressive 13-cis-retinoic acid dosage in the treatment of oral leukoplakia. Eur. J. Cancer B Oral Oncol. 28B, 121–123 (1992).

    Article  CAS  PubMed  Google Scholar 

  114. Hong, W. K. et al. 13-cis-retinoic acid in the treatment of oral leukoplakia. N. Engl. J. Med. 315, 1501–1505 (1986).

    Article  CAS  PubMed  Google Scholar 

  115. Shin, D. M. et al. Accumulation of p53 protein and retinoic acid receptor-β in retinoid chemoprevention. Clin. Cancer Res. 3, 875–880 (1997).

    CAS  PubMed  Google Scholar 

  116. Kraemer, K. H., DiGiovanna, J. J., Moshell, A. N., Tarone, R. E. & Peck, G. L. Prevention of skin cancer in xeroderma pigmentosum with the use of oral isotretinoin. N. Engl. J. Med. 318, 1633–1637 (1988).

    Article  CAS  PubMed  Google Scholar 

  117. Kraemer, K. H., DiGiovanna, J. J. & Peck, G. L. Chemoprevention of skin cancer in xeroderma pigmentosum. J. Dermatol. 19, 715–718 (1992).

    Article  CAS  PubMed  Google Scholar 

  118. Hong, W. K. et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 323, 795–801 (1990).13- cis retinoic acid treatment reduced the risk for second primary tumours by 20% (2 versus 12 patients) in a cohort of 103 patients who were disease free after primary treatment.

    Article  CAS  PubMed  Google Scholar 

  119. Benner, S. E., Pajak, T. F., Lippman, S. M., Earley, C. & Hong, W. K. Prevention of second primary tumors with isotretinoin in patients with squamous cell carcinoma of the head and neck: long-term follow-up. J. Natl Cancer Inst. 86, 140–141 (1994).

    Article  CAS  PubMed  Google Scholar 

  120. Shin, D. M. et al. Combined interferon-α, 13-cis-retinoic acid, and α-tocopherol in locally advanced head and neck squamous cell carcinoma: novel bioadjuvant phase II trial. J. Clin. Oncol. 19, 3010–3017 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Matthay, K. K. et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N. Engl. J. Med. 341, 1165–1173 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Lippman, S. M. et al. Randomized phase III intergroup trial of isotretinoin to prevent second primary tumors in stage I non-small-cell lung cancer. J. Natl Cancer Inst. 93, 605–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Recchia, F. et al. Cisplatin, vindesine, mitomycin-C and 13-cis retinoic acid in the treatment of advanced non small cell lung cancer. A phase II pilot study. Anticancer Res. 20, 1985–1990 (2000).

    CAS  PubMed  Google Scholar 

  124. Park, T. K. et al. Interferon-α 2α, 13-cis-retinoic acid and radiotherapy for locally advanced carcinoma of the cervix: a pilot study. Eur. J. Gynaecol. Oncol. 19, 35–38 (1998).

    CAS  PubMed  Google Scholar 

  125. Lippman, S. M. et al. 13-cis-retinoic acid plus interferon-α-2α: highly active systemic therapy for squamous cell carcinoma of the cervix. J. Natl Cancer Inst. 84, 241–245 (1992).

    Article  CAS  PubMed  Google Scholar 

  126. Cohen, M. H. et al. Drug approval summaries: arsenic trioxide, tamoxifen citrate, anastrazole, paclitaxel, bexarotene. Oncologist 6, 4–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Duvic, M. & Cather, J. C. Emerging new therapies for cutaneous T-cell lymphoma. Dermatol. Clin. 18, 147–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Hurst, R. E. Bexarotene ligand pharmaceuticals. Curr. Opin. Investig. Drugs 1, 514–523 (2000).

    CAS  PubMed  Google Scholar 

  129. Khuri, F. R. et al. Multi-institutional phase I/II trial of oral bexarotene in combination with cisplatin and vinorelbine in previously untreated patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 19, 2626–2637 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Camerini, T. et al. Safety of the synthetic retinoid fenretinide: long-term results from a controlled clinical trial for the prevention of contralateral breast cancer. J. Clin. Oncol. 19, 1664–1670 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Decensi, A. & Costa, A. Recent advances in cancer chemoprevention, with emphasis on breast and colorectal cancer. Eur. J. Cancer 36, 694–709 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. McPherson, K., Steel, C. M. & Dixon, J. M. ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ 321, 624–628 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Torrisi, R. & Decensi, A. Fenretinide and cancer prevention. Curr. Oncol. Rep. 2, 263–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Tradati, N. et al. Successful topical treatment of oral lichen planus and leukoplakias with fenretinide (4-HPR). Cancer Lett. 76, 109–111 (1994).

    Article  CAS  PubMed  Google Scholar 

  135. Ruidi, C. et al. Chemoprevention of cancer of uterine cervix: a study on chemoprevention of retinamide II from cervical precancerous lesions. J. Cell Biochem. Suppl. 29, 140–143 (1997).

    Article  Google Scholar 

  136. Reynolds, C. P. Differentiating agents in pediatric malignancies: retinoids in neuroblastoma. Curr. Oncol. Rep. 2, 511–518 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Veronesi, U. & Decensi, A. Retinoids for ovarian cancer prevention: laboratory data set the stage for thoughtful clinical trials. J. Natl Cancer Inst. 93, 486–488 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, D., Holmes, W. F., Wu, S., Soprano, D. R. & Soprano, K. J. Retinoids and ovarian cancer. J. Cell Physiol. 185, 1–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Clifford, J. L. et al. Effects of novel phenylretinamides on cell growth and apoptosis in bladder cancer. Cancer Epidemiol. Biomarkers Prev. 10, 391–395 (2001).

    CAS  PubMed  Google Scholar 

  140. Thaller, C. et al. Fenretinide therapy in prostate cancer: effects on tissue and serum retinoid concentration. J. Clin. Oncol. 18, 3804–3808 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Weiss, H. L. et al. Bayesian monitoring of a phase II chemoprevention trial in high-risk cohorts for prostate cancer. Urology 57, 220–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Muto, Y. et al. Prevention of second primary tumors by an acyclic retinoid, polyprenoic acid, in patients with hepatocellular carcinoma. Hepatoma Prevention Study Group. N. Engl. J. Med. 334, 1561–1567 (1996).Polyprenoic acid reduced the risk for second primary hepatocellular carcinomas by 22% (12 versus 22 patients) in a cohort of 89 patients who were free of disease after surgical resection of a primary hepatoma or the percutaneous injection of ethanol.

    Article  CAS  PubMed  Google Scholar 

  143. Muto, Y., Moriwaki, H. & Saito, A. Prevention of second primary tumors by an acyclic retinoid in patients with hepatocellular carcinoma. N. Engl. J. Med. 340, 1046–1047 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. DiSilvestro, P. A., DiSilvestro, J. M., Lenhardt, W., Pfahl, M. & Mannel, R. S. Treatment of cervical intraepithelial neoplasia levels 2 and 3 with adapalene, a retinoid-related molecule. J. Lower Genital Tract Dis. 5, 33–37 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

Online Tables 1 and 2 are also available from the authors on request. We thank P. Germain for critically reading the manuscript and all our colleagues for discussion and communicating unpublished studies to us, in particular S. Minucci, P. G. Pelicci, A. Zelent, D. Grimwade, P. Chambon, M. Lanotte, C. Chomienne, Y. Shiratori and A. Fanjul. We apologize to all colleagues whose work could only be cited inadequately due to space limitation. L.A. is particularly grateful for support by the Institut National de la Santé et de la Recherche Médicale (INSERM). Our studies mentioned in the text have been supported by funds from the European Community, the AICR, INSERM, the Centre National de la Recherche Scientifique, the Hôpital Universitaire de Strasbourg and Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary Table 1 Growth-inhibitory and apoptogenic effects of retinoids in preclinical studies.

Supplementary Table 2 Retinoid/rexinoid receptors retinoid/rexinoid responsivity and tumour progression. (PDF 89 kb)

Animation

Related links

Related links

DATABASES

CancerNet:

acute myeloid leukaemia

breast cancer

prostate carcinoma

squamous-cell carcinomas

 LocusLink:

AIB1

AML1

caspase-8

CBP

c-FOS

c-JUN

cytochrome c

DR4

DR5

EGR1

ETO

FAS

FASL

Fos

GR

HDAC

Hras1

IFN-α

IFN-β

JNK

Kras2

NCoR

NPM

NUMA

p300

p38 mitogen-activated protein kinase

p53

PKA

PLZF

PML

PPARγ

protein kinase C

RARα

RARβ

RARγ

retinaldehyde dehydrogenase-2

RXRα

RXRβ

RXRγ

SMRT

STAT5B

TIF2

TR3/NGFIB/Nur77

TRAIL

TRAP

WAF1

 Medscape DrugInfo:

arsenic trioxide

sodium phenylbutyrate

tamoxifen

Glossary

AP1

A transcription factor that is composed of c-JUN, either as a homodimer or as a heterodimer with c-FOS. Both are 'immediate-early genes': expression of these genes is low or undetectable in quiescent cells, but is activated within minutes after extracellular stimulation, such as addition of a growth factor.

ACUTE PROMYELOCYTIC LEUKAEMIA

(APL). A subtype of acute myelocytic leukaemia (AML), also referred to as AML–M3 in the French–American–British (FAB) classification; it is caused by chromosomal translocations involving RARα; the most common translocation (t(15;17)) generates a PML–RARα fusion protein that causes a block in differentiation of promyelocytes.

TERATOGEN

An agent that is capable of causing malformations in embryos.

COREPRESSORS (CoRs)

Proteins that cooperate with nuclear hormone receptors to repress transcription. CoRs tether histone deacetylase (HDAC)-containing complexes to target gene promoters. The two main nuclear receptor corepressors are NCoR (nuclear receptor corepressor) and SMRT (silencing mediator for retinoid and thyroid hormone receptor).

CO-ACTIVATORS (CoAs)

Proteins that cooperate with nuclear hormone receptors to activate transcription. Two classes are known: the p160 family, which recruits histone acetyltransferases, and the TRAP/DRIP/SMCC complex, which is thought to interact with the basal transcription machinery.

MORPHOGEN

A diffusible substance that carries positional information in the embryo, thereby determining the differentiation pathway that cells detecting this information will undergo.

CRE–LOX

A technology that allows genes to be ablated in a tissue-selective and inducible manner.

PHORBOL ESTERS

Polycyclic esters that are isolated from croton oil. The most common is phorbol myristoyl acetate (PMA, also known as 12,13-tetradecanoyl phorbol acetate or TPA). They are potent co-carcinogens or tumour promoters because they mimic diacylglycerol, thereby irreversibly activating protein kinase C.

SQUAMOUS- AND SPINOUS-CELL CARCINOMAS

Carcinomas that develop from the squamous or spinous layers of the epithelium.

BASAL-CELL CARCINOMA

A common carcinoma that is derived from the basal cells of the epidermis; often a consequence of exposure to sunlight and much more common in those with fair skin; it rarely metastasizes.

LEIOMYOMA

A benign tumour of smooth muscle in which parallel arrays of smooth muscle cells form bundles that are arranged in a whorled pattern. Leiomyoma of the uterus (fibroid) is the most common form.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altucci, L., Gronemeyer, H. The promise of retinoids to fight against cancer. Nat Rev Cancer 1, 181–193 (2001). https://doi.org/10.1038/35106036

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35106036

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing