Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein-DNA interactions at a yeast replication origin

Abstract

AN understanding of the protein-DNA interactions in vivo at origins of DNA replication in eukaryotes is essential to delineate the mechanism of initiation of DNA synthesis and its control in the cell cycle1,2. In the yeast Saccharomyces cerevisiae, a family of sequences known as autonomously replicating sequences (ARSs) function as origins of bidirectional DNA replication on plasmids and, in several instances, also in their normal chromosomal location3. Here we use nucleotide resolution genomic footprinting to investigate the association of proteins with ARS1. Nuclease protection patterns indicate that at least two different cellular factors interact with functional elements in ARS1. The first seems to be ARS-binding factor 1. The second seems to be a novel protein that generates extensive protection over the essential ARS consensus sequence and phased DNasel-sensitive sites across a functionally important flanking sequence. Hypersensitivity of this region to cleavage by copper phenanthroline indicates that it is under torsional strain, analogous to that produced at transcriptional start sites by assembly of an initiation complex. The protection in situ is similar to that generated by the origin recognition complex (ORC) protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Diffley, J. F. X. & Stillman, B. Trends Genet. 6, 426–432 (1990).

    Article  Google Scholar 

  2. Campbell, J. L. & Newlon, C. S. in The Molecular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis and Energetics (Cold Spring Harbor Laboratory Press, New York, in the press).

  3. Fangman, W. L. & Brewer, B. J. A. Rev. Cell Biol. 7, 375–402 (1991).

    Article  CAS  Google Scholar 

  4. Celniker, S. E., Sweder, K., Srienc, F., Bailey, J. E. & Campbell, J. L. Molec. cell. Biol. 4, 2455–2466 (1984).

    Article  CAS  Google Scholar 

  5. Marahrens, Y. & Stillman, B. Science 255, 817–823 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Buchman, A. R., Kimmerly, W. J., Rine, J. & Kornberg, R. D. Molec. cell. Biol. 8, 210–225 (1988).

    Article  CAS  Google Scholar 

  7. Diffley, J. F. X. & Stillman, B. Proc. natn. Acad. Sci. U.S.A. 85, 2120–2124 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Shore, D., Stillman, D. J., Brand, A. H. & Nasmyth, K. A. EMBO J. 6, 461–467 (1987).

    Article  CAS  Google Scholar 

  9. Sweder, K. S., Rhode, P. R. & Campbell, J. L. J. biol. Chem. 263, 17270–17277 (1988).

    CAS  PubMed  Google Scholar 

  10. Hofmann, J. F.-X. & Gasser, S. M. Cell 64, 951–960 (1991).

    Article  CAS  Google Scholar 

  11. Schmidt, A. M., Herterich, S. U. & Krauss, G. EMBO J. 10, 981–985 (1991).

    Article  CAS  Google Scholar 

  12. Kuno, K., Murakami, S. & Kuno, S. Gene 95, 73–77 (1990).

    Article  CAS  Google Scholar 

  13. Diffley, J. F. X. & Stillman, B. Proc. natn. Acad. Sci. U.S.A. 88, 7864–7868 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Bell, S. P. & Stillman, B. Nature 357, 128–134 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Huibregtse, J. M. & Engelke, D. R. Meth. Enzym. 194, 550–562 (1991).

    Article  CAS  Google Scholar 

  16. Thoma, F., Bergman, L. W. & Simpson, R. T. J. molec. Biol. 177, 715–733 (1984).

    Article  CAS  Google Scholar 

  17. Long, C. M. Brajkovich, C. M. & Scott, J. F. Molec. cell. Biol. 5, 3124–3130 (1985).

    Article  CAS  Google Scholar 

  18. Thoma, F. J. molec. Biol. 190, 177–190 (1986).

    Article  CAS  Google Scholar 

  19. Lohr, D. & Torchia, T. Biochemistry 27, 3961–3965 (1988).

    Article  CAS  Google Scholar 

  20. Simpson, R. T. Nature 343, 387–389 (1990).

    Article  ADS  CAS  Google Scholar 

  21. van Holde, K. E. Chromatin (Springer, New York, 1989).

    Book  Google Scholar 

  22. Sigman, D. S. Biochemistry 29, 9097–9105 (1990).

    Article  CAS  Google Scholar 

  23. Sawodogo, M. & Roeder, R. G. Cell 43, 165–175 (1985).

    Article  Google Scholar 

  24. Buratowski, S., Sopta, M., Greenblatt, J. & Sharp, P. A. Proc. natn. Acad. Sci. U.S.A. 88, 7509–7513 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Wang, W., Carey, M. & Gralla, J. D. Science 255, 450–453 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Schnos, M., Zahn, K., Inman, R. B. & Blattner, F. R. Cell 52, 385–395 (1988).

    Article  CAS  Google Scholar 

  27. Bramhill, D. & Kornberg, A. Cell 52, 743–755 (1988).

    Article  CAS  Google Scholar 

  28. Borowiec, J. A. & Hurwitz, J. EMBO J. 7, 3149–3158 (1988).

    Article  CAS  Google Scholar 

  29. Kataoka, T. et al. Cell 37, 437–445 (1984).

    Article  CAS  Google Scholar 

  30. Lowndes, N. F., Johnson, A. L. & Johnston, L. H. Nature 350, 247–250 (1991).

    Article  ADS  CAS  Google Scholar 

  31. Stinchcomb, D. T., Struhl, K. & Davis, R. W. Nature 282, 39–43 (1979).

    Article  ADS  CAS  Google Scholar 

  32. Rose, M. D., Winston, F. & Hieter, P. Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  33. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diffley, J., Cocker, J. Protein-DNA interactions at a yeast replication origin. Nature 357, 169–172 (1992). https://doi.org/10.1038/357169a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357169a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing