Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Objective analysis of the topological organization of the primate cortical visual system

Abstract

THE primate cortical visual system is composed of many structurally and functionally distinct areas1–3, each receiving and sending about 10 projections from and to other cortical areas1. The visual cortex is thus served by many cortico–cortical connections to form a network of considerable complexity. Thus the gross organization of this cortical processing system presents a formidable topological problem: although the spatial position of the areas in the brain is reasonably well established, the gross 'processing architecture' defined by the connections, is less well understood. Here I report an optimization approach that gives both qualitative and quantitative insight into the connectional topology of the primate cortical visual system. This approach supports suggestions that the system is divided into a dorsal 'stream' and a ventral 'stream' with limited cross-talk, that these two streams reconverge in the region of the principal sulcus (area 46) and in the superior temporal polysensory areas, that the system is hierarchically organized, and that the majority of the connections are from 'nearest-neighbour' and 'next-door-but-one' areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Felleman, D. J. & Van Essen, D. C. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  Google Scholar 

  2. Peters, A. & Jones, E. G. (eds) Cerebral Cortex (Plenum, New York and London, 1985).

  3. Zeki, S. & Shipp, S. Nature 335, 311–317 (1988).

    Article  CAS  ADS  Google Scholar 

  4. Seltzer, B. & Pandya, D. N. Brain Res. 149, 1–24 (1978).

    Article  CAS  Google Scholar 

  5. Boussaoud, D., Ungerleider, L. G. & Desimone, R. J. comp. Neurol. 296, 462–495 (1990).

    Article  CAS  Google Scholar 

  6. Van Essen, D. C., Felleman, D. J., De Yoe, E. A., Olavarria, J. & Knierim, J. Cold Spring Harb. Symp. quant. Biol. 55, 679–696 (1991).

    Article  Google Scholar 

  7. Shepard, R. N. Psychometrika 27, 125–140 (1962).

    Article  MathSciNet  Google Scholar 

  8. Young, F. W. Multidimensional Scaling: History, Theory and Applications (ed. Hamer, R. M.) (Erlbaum, Hillsdale, New Jersey, 1979).

    Google Scholar 

  9. Young, F. W. & Harris, D. F. in SPSS Base System User's Guide (ed. Norusis, M. J.) 396–461 (SPSS, Chicago, 1990).

    Google Scholar 

  10. Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. G., Goodale, M. A. & Mansfield, R. J. Q.) 549–586 (MIT, Cambridge, 1982).

    Google Scholar 

  11. De Yoe, E. A. & Van Essen, D. C. Trends. Neurosci. 11, 219–226 (1988).

    Article  CAS  Google Scholar 

  12. Schiller, P. & Lee, K. Science 251, 1251–1253 (1991).

    Article  CAS  ADS  Google Scholar 

  13. Miyashita, Y. Nature 335, 817–820 (1988).

    Article  CAS  ADS  Google Scholar 

  14. Young, M. P. & Yamane, S. in Brain Mechanisms of Perception and Memory: from Neuron to Behavior (eds Ono, T., Squire, L. R., Fukuda, M. & Perrett, D. I.) (Oxford Univ. Press, in the press).

  15. Young, M. P. & Yamane, S. Science 256, 1327–1331 (1992).

    Article  CAS  ADS  Google Scholar 

  16. Tanaka, K., Saito, H., Fukada, Y. & Moriya, M. J. Neurophysiol. 66, 170–189 (1991).

    Article  CAS  Google Scholar 

  17. Gross, C. G., Rocha-Miranda, C. E. & Bender, D. B. J. Neurophysiol. 35, 96–111 (1972).

    Article  CAS  Google Scholar 

  18. Schoneman, P. & Carroll, R. M. Psychometrika 31, 1–10 (1970).

    Article  Google Scholar 

  19. Gower, J. C. in Psychometrika 40, 33–51 (1975).

    Article  MathSciNet  Google Scholar 

  20. Young, M. P. thesis, St Andrews Univ. (1990).

  21. Edgington, E. S. Randomization Tests (Dekker, New York, 1980).

    MATH  Google Scholar 

  22. Mitchison, G. Proc. R. Soc. B245, 151–158 (1991).

    Article  CAS  ADS  Google Scholar 

  23. Cowey, A. Q. J. exp. Psychol. 31, 1–17 (1979).

    Article  CAS  Google Scholar 

  24. Crick, F. & Koch, C. Cold Spring Harb. Symp. quant. Biol. 55, 953–962 (1991).

    Article  Google Scholar 

  25. Baizer, J. S., Ungerleider, L. G. & Desimone, R. J. Neurosci. 11, 168–190 (1991).

    Article  CAS  Google Scholar 

  26. Morel, A. & Bullier, J. Vis. Neurosci. 4, 555–578 (1990).

    Article  CAS  Google Scholar 

  27. Young, M. P., Tanaka, K. & Yamane, S. Soc. Neurosci. Abs. 17:1:73.4 (1991).

  28. Young, M. P., Tanaka, K. & Yamane, S. J. Neurophysiol. (in the press).

  29. Cavada, C. & Goldman-Rakic, P. S. J. comp. Neurol. 287, 393–421 (1989).

    Article  CAS  Google Scholar 

  30. Norusis, M. J. (ed.) SPSS Base System User's Guide (SPSS, Chicago, 1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, M. Objective analysis of the topological organization of the primate cortical visual system. Nature 358, 152–155 (1992). https://doi.org/10.1038/358152a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358152a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing