Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disease resistance results from foreign phytoalexin expression in a novel plant

Abstract

ALTHOUGH phytoalexins1,2 have long been inferred to be important in the defence of plants against fungal infection1,2, there are few reports showing that they provide resistance to infection. Several plants, including grapevine, synthesize the stilbene-type phytoalexin resveratrol3–7 when attacked by pathogens. Stilbenes with fungicidal potential are formed in several unrelated plant species, such as peanut (Arachis hypogaea), grapevine (Vitis vinifera) and pine (Pinus sylvestris)3,5,11–15. Stilbene biosynthesis only specifically requires the presence of stilbene synthase6,9. Furthermore, the precursor molecules for the formation of hydroxy-stilbenes are malonyl-CoA and p-coumaroyl-CoA, both present in plants9. To investigate the potential of stilbene biosynthetic genes in a strategy of engineering pathogen resistance, we isolated stilbene synthase genes from grapevine, where they are expressed at a high level, and transferred them into tobacco10. We report here that regenerated tobacco plants containing these genes are more resistant to infection by Botrytis cinerea. This is, to our knowledge, the first report of increased disease resistance in transgenic plants based on an additional foreign phytoalexin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ingham, J. Bot. Rev. 38, 343–424 (1972).

    Article  CAS  Google Scholar 

  2. Ebel, J. A. Rev. Phytopath. 24, 235–264 (1986).

    Article  CAS  Google Scholar 

  3. Gorham, J. Prog. Phytochem. 6, 203–252 (1980).

    CAS  Google Scholar 

  4. Ingham, J. Phytochemistry 15, 1791–1793 (1976).

    Article  CAS  Google Scholar 

  5. Pont, V. & Pezet, R. J. Phytopath. 130, 1–8 (1990).

    Article  CAS  Google Scholar 

  6. Schöppner, A. & Kindl, H. FEBS Lett. 108, 345–352 (1979).

    Article  Google Scholar 

  7. Schröder, G., Brown, J. W. S. & Schröder, J. Eur. J. Biochem. 172, 161–169 (1988).

    Article  Google Scholar 

  8. Melchior, F. & Kindl, H. Arch. Biochem. Biophys. 288, 552–557 (1991).

    Article  CAS  Google Scholar 

  9. Hain, R., Bieseler, B., Kindl, H., Schröder, G. & Stöcker, R. Pl. molec. Biol. 15, 325–336 (1990).

    Article  CAS  Google Scholar 

  10. Hain, R. et al. Molec. Gen Genet 199, 161–168 (1985).

    Article  CAS  Google Scholar 

  11. Stein, U. & Blaich, R. Vitis 24, 75–87 (1985).

    Google Scholar 

  12. Langcake, P. Physiol. Pl. Path. 9, 77–86 (1976).

    Article  CAS  Google Scholar 

  13. Langcake, P. & Pryce, R. J. Experientia 33, 151–152 (1977).

    Article  CAS  Google Scholar 

  14. Langcake, P. & Pryce, R. J. Phytochemistry 16, 1193–1196 (1977).

    Article  CAS  Google Scholar 

  15. Dercks, W. & Creasy, L. L. Physiol. molec. Pl. Path. 34, 189–202 (1989).

    Article  CAS  Google Scholar 

  16. Bedbrook, J. Pl. molec. Biol. Newslett. 2, 24 (1981).

    Google Scholar 

  17. Frischauf, A. M., Lehrach, H., Poustka, A. & Murray, N. J. molec. Biol. 170, 827–842 (1983).

    Article  CAS  Google Scholar 

  18. Cuypers, B., Schmelzer, E. & Hahlbrock, K. Molec. Pl.-Microbe Interact 1, 157–160 (1988).

    Article  Google Scholar 

  19. Schmelzer, E., Krüger-Lebus, S. & Hahlbrock, K. Pl. Cell 1, 993–1001 (1989).

    Article  CAS  Google Scholar 

  20. Tegtmeier, K. J., VanEtten, H. D. Phytopathology 72, 608–612 (1982).

    Article  CAS  Google Scholar 

  21. Schäfer, W., Straney, E., Cluffetti, L., VanEtten, H. D. & Yoder, O. C. Science 246, 247–249 (1989).

    Article  ADS  Google Scholar 

  22. Linsmaier, E. M. & Skoog, F. Physiol. Pl. 18, 100–127 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hain, R., Reif, HJ., Krause, E. et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361, 153–156 (1993). https://doi.org/10.1038/361153a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361153a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing