Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Innervation directs receptor synthesis and localization in Drosophila embryo synaptogenesis

Abstract

IN the Drosophila embryo, motor neurons form stereotyped synapses (neuromuscular junctions) on identified muscles1–3. We have used a mutant (prospero) that removes or delays innervation4,5 to assay the role of the presynaptic motor neuron in the development of the receptive field of the postsynaptic muscle, prospero (pros) is not expressed in the muscles or their precursors. Here we find that the muscle defines the correct synaptic zone in the absence of the motor neuron by restricting putative guidance molecules to this specialized membrane region. Furthermore, the muscle expresses functional transmitter receptors at the correct developmental time without innervation. On the other hand, the muscle does not localize receptors to the synapse without instruction from the motor neuron, nor does a second, much larger, synthesis of receptors occur in muscles deprived of innervation. In muscles receiving delayed innervation, or muscles innervated at aberrant synaptic sites, both receptor clustering and receptor synthesis are delayed or redirected, consistent with the new pattern of innervation. We conclude that the muscle autonomously defines the synaptic site, whereas the motor neuron directs the development of the muscle's receptive field by stimulating the synthesis and localization of transmitter receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johansen, J., Halpern, M. & Keshishian, H. J. Neurosci. 9, 4318–4332 (1989).

    Article  CAS  Google Scholar 

  2. Sink, H. & Whitington, P. J. Neurobiol. 22, 298–311 (1991).

    Article  CAS  Google Scholar 

  3. Broadie, K. & Bate, M. J. Neurosci. 13, 144–166 (1993).

    Article  CAS  Google Scholar 

  4. Doe, C., Chu-LaGraff, Q., Wright, D. & Scott, M. Cell 65, 451–464 (1991).

    Article  CAS  Google Scholar 

  5. Vaessin, H. et al. Cell 67, 941–953 (1991).

    Article  CAS  Google Scholar 

  6. Halpern, M., Chiba, A., Johansen, J. & Keshishian, H. J. Neurosci. 11, 3227–3238 (1991).

    Article  CAS  Google Scholar 

  7. Nose, A., Mahajan, V. & Goodman, C. Cell 70, 553–567 (1992).

    Article  CAS  Google Scholar 

  8. Liu, D. & Westerfield, M. J. Neurosci. 12, 1859–1866 (1992).

    Article  CAS  Google Scholar 

  9. Dahm, L. & Landmesser, L. J. Neurosci. 11, 238–255 (1991).

    Article  CAS  Google Scholar 

  10. Landmesser, L., Dahm, L., Taug, J. & Rutishauser, U. Neuron 4, 655–667 (1990).

    Article  CAS  Google Scholar 

  11. Tosney, K., Watanabe, M., Landmesser, L. & Rutishauser, U. Devi Biol. 114, 427–452 (1988).

    Google Scholar 

  12. Anderson, M. & Cohen, M. J. Physlol., Lond. 268, 757–773 (1977).

    Article  CAS  Google Scholar 

  13. Dennis, M. A. Rev. Neurosci. 4, 43–68 (1981).

    Article  CAS  Google Scholar 

  14. Schuetze, S. & Role, L. A. Rev. Neurosci. 10, 403–457 (1987).

    Article  CAS  Google Scholar 

  15. Sanes, J. et al. Development 113, 1181–1191 (1991).

    CAS  PubMed  Google Scholar 

  16. Martinou, J.-C. & Merlie, J. J. neurosci. 11, 1291–1299 (1991).

    Article  CAS  Google Scholar 

  17. Simon, A., Hoppe, P. & Burden, S. Development 114, 545–553 (1992).

    CAS  PubMed  Google Scholar 

  18. Nitkin, R. et al. J. Cell Biol. 105, 2471–2478 (1987).

    Article  CAS  Google Scholar 

  19. Reist, N., Werle, M. & McMahon, U. Neuron 8, 865–868 (1992).

    Article  CAS  Google Scholar 

  20. Campanelli, J., Hoch, W., Rupp, F., Kreiner, T. & Scheller, R. Cell 67, 909–916 (1991).

    Article  CAS  Google Scholar 

  21. Campos-Ortega, J. & Haenlin, M. Roux's Arch. Dev. Biol. 201, 1–11 (1992).

    Article  Google Scholar 

  22. Hortsch, M. & Goodman, C. A. Rev. Cell Biol. 7, 505–557 (1991).

    Article  CAS  Google Scholar 

  23. Jan, L., Jan, Y. & Hughs, H. Cell 69, 715–718 (1992).

    Article  CAS  Google Scholar 

  24. Salkoff, L. et al. Trends neurosci. 15, 161–166 (1992).

    Article  CAS  Google Scholar 

  25. Jan, L. & Jan, Y. Proc. natn. Acad. Sci. U.S.A. 72, 2700–2704 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broadie, K., Bate, M. Innervation directs receptor synthesis and localization in Drosophila embryo synaptogenesis. Nature 361, 350–353 (1993). https://doi.org/10.1038/361350a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361350a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing