Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Yeast DNA repair and recombination proteins Rad1 and Rad1O constitute a single-stranded-DNA endonuclease

Abstract

DAMAGE-SPECIFIC recognition and incision of DNA during nucleotide excision repair in yeast1 and mammalian cells2 requires multiple gene products. Amino-acid sequence homology between several yeast and mammalian genes suggests that the mechanism of nucleotide excision repair is conserved in eukaryotes2–7, but very little is known about its biochemistry. In the yeast Saccharomyces cerevisiae at least 6 genes are needed for this process, including RAD1 and RAD10 (ref. 1). Mutations in the two genes inactivate nucleotide excision repair8,9 and result in a reduced efficiency of mitotic recombinational events between repeated sequences10–15. The RadlO protein has a stable and specific interaction with Radl protein16,17 and also binds to single-stranded DNA and promotes annealing of homologous single-stranded DNA18. The amino-acid sequence of the yeast RadlO protein is homologous with that of the human excision repair gene ERCC1 (ref. 3). Here we demonstrate that a complex of purified Radl and RadlO proteins specifically degrades single-stranded DNA by an endonucleolytic mechanism. This endonuclease activity is presumably required to remove non-homologous regions of single-stranded DNA during m. tic recombination between repeated sequences as previously suggested13, and may also be responsible for the specific incision of damaged DNA during nucleotide excision repair.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Friedberg, E. C., Siede, W. & Cooper, A. J. in The Molecular and Cellular Biology of the Yeast Saccharomyces: /. Genome Dynamics, Protein Synthesis and Energetics (ed. Broach, J., Jones, E. & Pringle, J.) 147–192 (Cold Spring Harbor Laboratory Press, New York, 1991).

    Google Scholar 

  2. Hoeijmakers, J. H. J. & Bootsma, D. Cancer Cells 2, 311–320 (1990).

    CAS  PubMed  Google Scholar 

  3. van Duin, M. et al. Cell 44, 913–923 (1986).

    Article  CAS  Google Scholar 

  4. Weber, C. A., Salazar, E. P., Stewart, S. A. & Thompson, L. H. EMBO J. 9, 1437–1447 (1990).

    Article  CAS  Google Scholar 

  5. Bankmann, M., Prakash, L. & Prakash, S. Nature 355, 555–558 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Gulyas, K. D. & Donahue, T. F. Cell 69, 1031–1042 (1992).

    Article  CAS  Google Scholar 

  7. Friedberg, E. C. Cell 71, 887–889 (1992).

    Article  CAS  Google Scholar 

  8. Reynolds, P., Prakash, L. & Prakash, S. Molec. cell Biol. 7, 1012–1021 (1987).

    Article  CAS  Google Scholar 

  9. Reynolds, P., Prakash, L., Dumais, D., Perozzi, G. & Prakash, S. EMBO J. 4, 3549–3552 (1985).

    Article  CAS  Google Scholar 

  10. Aguilera, A. & Klein, H. L. Genetics 123, 683–694 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schiestl, R. H. & Prakash, S. Molec. cell. Biol. 8, 3619–3626 (1989).

    Article  Google Scholar 

  12. Thomas, B. J. & Rothstein, R. Genetics 123, 725–738 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fishman-Lobell, J. & Haber, J. E. Science 258, 480–484 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Schiestl, R. H. & Prakash, S. Molec. cell. Biol. 10, 2485–2491 (1990).

    Article  CAS  Google Scholar 

  15. Petes, T. D., Malone, R. E. & Symington, L. S. in The Molecular and Cellular Biology of the Yeast Saccharomyces: /. Genome Dynamics, Protein Synthesis, and Energetics (ed. Broach, J., Jones, E. & Pringle, J.) 407–521 (Cold Spring Harbor Laboratory Press, New York, 1991).

    Google Scholar 

  16. Bardwell, L., Cooper, A. J. & Friedberg, E. C. Molec. cell. Biol. 12, 3041–3049 (1992).

    Article  CAS  Google Scholar 

  17. Bailly, V., Sommers, C. H., Sung, P., Prakash, L. & Prakash, S. Proc. natn. Acad Sci. U.S.A. 89, 8273–8277 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Sung, P., Prakash, L. & Prakash, S. Nature 355, 743–745 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Bardwell, A. J., Bardwell, L., Johnson, D. K. & Friedberg, E. C. Molec. Microbiol. (in the press).

  20. Chase, J. W. & Williams, K. R. A. Rev. Biochem. 55, 103–136 (1986).

    Article  CAS  Google Scholar 

  21. Sung, P., Prakash, L., Matson, S. W. & Prakash, S. Proc. natn. Acad. Sci. U.S.A. 84, 8951–8955 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Harosh, I., Naumovski, L. & Friedberg, E. C. J. biol. Chem. 264, 20532–20539 (1989).

    CAS  PubMed  Google Scholar 

  23. Naegeli, H., Bardwell, L. & Friedberg, E. C. J. biol. Chem. 267, 392–398 (1992).

    CAS  PubMed  Google Scholar 

  24. Naegeli, H., Bardwell, L. & Friedberg, E. C. Biochemistry 32, 613–621 (1993).

    Article  CAS  Google Scholar 

  25. Naegeli, H., Modrich, P. & Friedberg, E. C. J. biol. Chem. (in the press).

  26. Weeda, G. et al. Cell 62, 777–792 (1990).

    Article  CAS  Google Scholar 

  27. Bardwell, L., Burtscher, H., Weiss, W. A., Nicolet, C. M. & Friedberg, E. C. Biochemistry 29, 3119–3126 (1990).

    Article  CAS  Google Scholar 

  28. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Press, New York, 1989).

    Google Scholar 

  29. Formosa, T., Barry, J., Alberts, B. M. & Greenblatt, J. Meth. Enzym. 208, 24–54 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomkinson, A., Bardwell, A., Bardwell, L. et al. Yeast DNA repair and recombination proteins Rad1 and Rad1O constitute a single-stranded-DNA endonuclease. Nature 362, 860–862 (1993). https://doi.org/10.1038/362860a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362860a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing