Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Segmental organization of embryonic diencephalon

Abstract

THE diencephalon is a complex integration centre and intricate relay station of the vertebrate brain1–3. Its development involves the generation of great cellular diversity and neuronal specificity. We report here that it becomes organized in steps, through a stereotyped sequence of neuromeric subdivisions. Diencephalic neuromeres define four cellular domains (D1–D4) that can be followed throughout development, each unit contributing to a well defined part of the adult structural pattern. We propose that the segmental identity of each diencephalic unit is specified by a unique combination of genes4–13, maintained by polyclonal cell lineage restrictions. A comparison of vertebrate and arthropod development suggests that the basic principles that control anterior axial patterning and set up neuronal specificity in the embryonic central nervous system are highly conserved in evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ramóny Cajal, S. Studies on the Diencephalon (Thomas, Springfield, 1966).

    Google Scholar 

  2. Ariëns Kappers, C. U., Huber, G. C. & Crosby, E. C. The Comparative Anatomy of the Nervous System of Vertebrates, Including Man (Hafner, New York, 1960).

    Google Scholar 

  3. Sarnat, H. B. & Netsky, M. G. Evolution of the Nervous System (Oxford Univ. Press, Oxford, 1981).

    Google Scholar 

  4. Wilkinson, D. G., Bailes, J. A. & McMahon, A. P. Cell 50, 79–88 (1987).

    Article  CAS  Google Scholar 

  5. Roelink, H. & Nusse, R. Genes Dev. 5, 381–388 (1991).

    Article  CAS  Google Scholar 

  6. McGrew, L. L. Otte, A. P. & Moon, R. T. Development 115, 463–473 (1992).

    CAS  PubMed  Google Scholar 

  7. Price, M. et al. Nature 351, 748–751 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Price, M. et al. Neuron 8, 241–255 (1992).

    Article  CAS  Google Scholar 

  9. Porteus, M. H. et al. Neuron 7, 221–229 (1991).

    Article  CAS  Google Scholar 

  10. Simeone, A. et al. Nature 358, 687–690 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Walther, C. & Gruss, P. Development 113, 1435–1449 (1991).

    CAS  PubMed  Google Scholar 

  12. Krauss, S. et al. Nature 353, 267–270 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Tao, W. & Lai, E. Neurons 8, 957–966 (1992).

    Article  CAS  Google Scholar 

  14. Kuhlenbeck, H. The Central Nervous System of Vertebrates (S. Karger, Berlin, 1973).

    Google Scholar 

  15. von Kupffer, K. in Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere. (ed. Hertwig, O.) Bd 2, Teil 3 (Fischer, Jena, 1906).

    Google Scholar 

  16. Rendahl, H. Acta zool. 5, 119–344 (1924).

    Article  Google Scholar 

  17. Bergquist, H. Progr. Brain Res. 5, 223–229 (1964).

    Article  Google Scholar 

  18. Vaage, S. The Segmentation of the Primitive Neural Tube in Chick Embryos (Gallus domesticus) (Springer, Berlin, 1969).

    Google Scholar 

  19. Keyser, A. Acta anat. 83 (suppl. 59), 1–177 (1972).

    Article  Google Scholar 

  20. Puelles, L., Amat, J. A. & Martínez-de-la-Torre, M. J. comp. Neurol. 266, 247–268 (1987).

    Article  CAS  Google Scholar 

  21. Altman, J. & Bayer, S. A. J. comp. Neurol. 275, 346–405 (1988).

    Article  CAS  Google Scholar 

  22. Hamburger, V. & Hamilton, L. J. Morph. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  23. Stern, C. D., Sisodiya, S. M. & Keynes, R. J. J. Embryol. exp. Morph. 91, 209–226 (1986).

    CAS  PubMed  Google Scholar 

  24. Lumsden, A. & Keynes, R. Nature 337, 424–428 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Layer, P. G. & Alber, R. Development 109, 613–624 (1990).

    CAS  PubMed  Google Scholar 

  26. Cooper, N. G. F. & Steindler, D. A. J. comp. Neurol. 249, 157–169 (1986).

    Article  CAS  Google Scholar 

  27. Bate, C. M. & Grünewald, E. B. J. Embryol. exp. Morph. 61, 317–330 (1981).

    CAS  PubMed  Google Scholar 

  28. Thomas, J. B. et al. Nature 310, 203–207 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Stern, C. D. et al. Development 104 (suppl.), 231–244 (1988).

    PubMed  Google Scholar 

  30. Fraser, S., Keynes, R. & Lumsden, A. Nature 344, 431–435 (1990).

    Article  ADS  CAS  Google Scholar 

  31. Stern, C. D. & Keynes, R. J. Development 99, 261–272 (1987).

    CAS  PubMed  Google Scholar 

  32. Garcéía-Bellido, A., Ripoll, P. & Morata, G. Nature New Biol. 245, 251–253 (1973).

    Article  Google Scholar 

  33. Lawrence, P. A. Nature 344, 382–383 (1990).

    Article  ADS  CAS  Google Scholar 

  34. McGinnis, W. & Hoxlauf, R. Cell 68, 283–302 (1992).

    Article  CAS  Google Scholar 

  35. Cohen, S. M. & Jürgens, G. Nature 346, 482–485 (1991).

    Article  ADS  Google Scholar 

  36. Martínez, S., Wassef, M. & Alvarado-Mallart, R. M. Neuron 6, 971–981 (1991).

    Article  Google Scholar 

  37. Yamada, T. et al. Cell 64, 635–648 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figdor, M., Stern, C. Segmental organization of embryonic diencephalon. Nature 363, 630–634 (1993). https://doi.org/10.1038/363630a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363630a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing