Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1

Abstract

THE plant hormone auxin has a central role in many aspects of plant growth and development1,2. By screening for mutants of Arabidopsis that are resistant to exogenous auxin, we have identified several genes that are required for normal auxin response3. One of these genes, AXR1, is defined by recessive mutations that confer auxin resistance to the roots, rosettes and inflorescences of mutant plants4–6. In addition, axr1 mutants display a variety of morphological defects that are consistent with a reduction in auxin sensitivity5. Here we isolate the AXR1 gene using a map-based approach and report that AXR1 encodes a new protein with significant sequence similarity to the ubiquitin-activating enzyme E1. The AXR1 protein is highly diverged from previously characterized E1 enzymes, however, and lacks a key cysteine residue that is essential for E1 activity7. AXR1 may therefore define a new class of enzymes in the ubiquitin pathway or it may have a novel function in cellular regulation which is unrelated to ubiquitin conjugation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Evans, M. L. in Encyclopedia of Plant Physiology 10 (ed. Scott, T. K.) 23–79 (1985).

    Google Scholar 

  2. Davies, P. J. in Plant Hormones and their Role in Plant Growth and Development (ed. Davies, P. J.) 1–11 (1988).

    Google Scholar 

  3. Estelle, M. BioEssays 14, 439–444 (1992).

    Article  CAS  Google Scholar 

  4. Estelle, M. & Somerville, C. R. Molec. gen. Genet. 206, 200–206 (1987).

    Article  CAS  Google Scholar 

  5. Lincoln, C. et al. Plant Cell 2, 1071–1080 (1990).

    Article  CAS  Google Scholar 

  6. Lincoln, C. & Estelle, M. Iowa Acad. Sci. 98, 68–71 (1991).

    CAS  Google Scholar 

  7. Hatfield, P. M. & Vierstra, R. D. J. biol. Chem. 267, 14799–14803 (1992).

    CAS  PubMed  Google Scholar 

  8. Ward, E. R. & Jen, G. C. Plant molec. Biol. 14, 561–568 (1990).

    Article  CAS  Google Scholar 

  9. Olszewski, N. E. et al. Nucleic Acids Res. 16, 10765–10782 (1988).

    Article  CAS  Google Scholar 

  10. Valvekens, D. et al. Proc. natn. Acad. Sci. 85, 5536–5540 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Devereaux, J., Haeberli, P. & Smithies, O. Nucleic Acids Res. 12, 387–394 (1984).

    Article  Google Scholar 

  12. Handley, P. M. et al. Proc. natn. Acad. Sci. U.S.A. 88, 258–262 (1991).

    Article  ADS  CAS  Google Scholar 

  13. McGrath, J. P., Jentsch, S. & Varshavsky, A. EMBO J. 10, 227–236 (1991).

    Article  CAS  Google Scholar 

  14. Hatfield, P. M., Callis, J. & Vierstra, R. J. biol. Chem. 265, 15813–15817 (1990).

    CAS  PubMed  Google Scholar 

  15. Finley, K. & Chau, V. A. Rev. Cell Biol. 7, 25–69 (1991).

    Article  CAS  Google Scholar 

  16. Cenciarelli, C. et al. Science 257, 795–797 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Mori, S., Heldin, C.-H. & Claesson-Welsh, L. J. biol. Chem. 267, 6429–6434 (1992).

    CAS  PubMed  Google Scholar 

  18. Paolini, R. & Kinet J.-P. EMBO J. 12, 779–786 (1993).

    Article  CAS  Google Scholar 

  19. Suiter, K. A., Wendel, J. F. & Case, J. S. J. Heredity 74, 203–204 (1983).

    Article  CAS  Google Scholar 

  20. Chang, C. et al. Proc. natn. Acad. Sci. U.S.A. 85, 6856–6860 (1983).

    Article  ADS  Google Scholar 

  21. Nam, H-G. et al. Plant Cell 1, 699–705 (1989).

    Article  CAS  Google Scholar 

  22. Dellaporta, S. L. et al. Plant molec. Biol. Rep. 1, 181–192 (1983).

    Article  Google Scholar 

  23. Sambrook, J. et al. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press New York, 1989).

    Google Scholar 

  24. Nairn, C. J. et al. Gene 65, 247–257 (1988).

    Article  CAS  Google Scholar 

  25. Puissant, C. & Houdebine, L-M. Biotechniques 8, 148–149 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leyser, H., Lincoln, C., Timpte, C. et al. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364, 161–164 (1993). https://doi.org/10.1038/364161a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364161a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing