Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid sequence evolution of the mammalian sex-determining gene SRY

Abstract

IN mammals, induction of male sex determination requires the Y-chromosome gene SRY1. SRY encodes a protein with a central 'high mobility group' domain (HMG box) of about 78 amino acids1–3. HMG boxes are found in a wide variety of proteins that bind to DNA with high affinity but differing degrees of sequence specificity4. The human SRY protein binds to linear DNA with sequence specificity5 and to cruciform DNA structures without sequence specificity6. The DNA-binding activity of the SRY protein resides in the HMG box and mutations in this region are associated with sex reversal in XY females6–8. No function has been ascribed to the portions of the SRY protein outside the HMG box. SRY belongs to a family of genes that are related by sequence homology within the DNA-binding domain: the genes most similar to SRY (>60%) have been named SOX genes (SRY box genes). None of the known SOX genes is homologous to SRY outside the HMG-box region. Although SRY is an important developmental regulator, its sequence is poorly conserved between species apart from the HMG-box domain. Here we investigate the coding sequence of SRY in primates and find that evolution has been rapid in the regions flanking the conserved domain. The high degree of sequence divergence and the frequency of non-synonymous mutations suggest either that the majority of the coding sequence has no functional significance or that directional selection has occurred.

This is a preview of subscription content, access via your institution

Access options

Similar content being viewed by others

References

  1. Sinclair, A. H. et al. Nature 346, 240–244 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Su, H. & Lau, Y.-F. C. Am. J. Hum. Genet. 52, 24–38 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gubbay, J. et al. Nature 346, 245–250 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Ner, S. S. Curr. Biol. 2, 208–210 (1992).

    Article  CAS  Google Scholar 

  5. Harley, V. R. et al. Science 255, 453–456 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Ferrari, S. et al. EMBO J. 11, 4497–4506 (1992).

    Article  CAS  Google Scholar 

  7. Berta, P. et al. Nature 348, 448–450 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Jager, R. J., Anvret, M., Hall, K. & Scherer, G. Nature 348, 452–454 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Gubbay, J. et al. Proc. natn. Acad. Sci. U.S.A. 89, 7953–7957 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Li, W. H., Wu, C. I. & Luo, C. C. Molec. Biol. Evol. 2, 150–174 (1985).

    Google Scholar 

  11. Koopman, P., Gubbay, J., Collignon, J. & Lovell-Badge, R. Nature 342, 940–942 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Palmer, M. S., Berta, P., Sinclair, A. H., Pym, B. & Goodfellow, P. N. Proc. natn. Acad. Sci. U.S.A. 87, 1681–1685 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Hill, R. E. & Hastie, N. D. Nature 326, 96–99 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Hughes, A. L. & Nei, M. Nature 335, 167–170 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Hughes, A. L., Ota, T. & Nei, M. Molec. Biol. Evol. 7, 515–524 (1990).

    CAS  PubMed  Google Scholar 

  16. Hughes, A. L. Genetics 127, 345–353 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Malaspina, P. et al. Ann. hum. Genet. 54, 297–305 (1990).

    Article  CAS  Google Scholar 

  18. Ellis, N. et al. Nature 344, 663–665 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Foster, J. W. et al. Nature 359, 531–533 (1992).

    Article  ADS  CAS  Google Scholar 

  20. GCG Program Manual for the GCG Package (575 Science Drive, Madison, Wisconsin 53711, USA, 1991).

  21. Johns, M. B. & Paulus-Thomas, J. E. Analyt. Biochem. 180, 276–278 (1989).

    Article  CAS  Google Scholar 

  22. Felsenstein, J. Cladistics 5, 164–166 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitfield, L., Lovell-Badge, R. & Goodfellow, P. Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature 364, 713–715 (1993). https://doi.org/10.1038/364713a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364713a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing