Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myelination in the absence of myelin-associated glycoprotein

Abstract

THE hypothesis that myelin-associated glycoprotein (MAG) initiates myelin formation is based in part on observations that MAG has an adhesive role in interactions between oligodendrocytes and neurons1. Furthermore, the over- or underexpression of MAG in transfected Schwann cells in vitro leads to accelerated myelination2 or hypomyelination3, respectively. Here we test this idea by creating a null mutation in the mag locus and deriving mice that are totally deficient in MAG expression at the RNA and protein level. In adult mutant animals the degree of myelination and its compaction are normal, whereas the organization of the periaxonal region is partially impaired. Mutant animals show a subtle intention tremor. Our findings do not support the widely held view that MAG is critical for myelin formation but rather indicate that MAG is necessary for maintenance of the cytoplasmic collar and periaxonal space of myelinated fibres.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Poltorak, M. et al. J. Cell Biol. 105, 1893–1899 (1987).

    Article  CAS  Google Scholar 

  2. Owens, G. C., Boyd, C. J., Bunge, R. P. & Salzer, J. L. J. Cell Biol. 111, 1171–1182 (1990).

    Article  CAS  Google Scholar 

  3. Owens, G. C. & Bunge, R. P. Neuron 7, 565–575 (1991).

    Article  CAS  Google Scholar 

  4. Kirschner, D. A., Ganser, A. L. & Caspar, D. L. in Myelin 2nd edn (ed. Morell, P.) Ch. 2, 51–95 (Plenum, London, 1984).

    Book  Google Scholar 

  5. Trapp, B., Quarles, R. & Griffin, J. J. Cell Biol. 98, 1272–1278 (1984).

    Article  CAS  Google Scholar 

  6. Hirano, A. Prog. Neuropath. 5, 99–112 (1983).

    Google Scholar 

  7. Huntingford, F. The Study of Animal Behaviour (Chapman and Hall, London, 1984).

    Book  Google Scholar 

  8. Gerlai, R. et al. Behav. Brain Res. 55, 51–59 (1993).

    Article  CAS  Google Scholar 

  9. Sternberger, N. H., Quarles, R. H., Hoyama, Y. & Webster, H. Proc. natn. Acad. Sci. U.S.A. 76, 1510–1514 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Martini, R. & Schachner, M. J. Cell Biol. 103, 2439–2448 (1986).

    Article  CAS  Google Scholar 

  11. Trapp, B. D., Quarles, R. H. & Suzuki, K. J. Cell Biol. 99, 594–606 (1984).

    Article  CAS  Google Scholar 

  12. Wood, P. M., Schachner, M. & Bunge, R. P. J. Neurosci. 10, 3635–3645 (1990).

    Article  CAS  Google Scholar 

  13. Trapp, B. D. & Quarles, R. H. J. Cell Biol. 92, 877–882 (1982).

    Article  CAS  Google Scholar 

  14. Arquint, M. et al. Proc. natn. Acad. Sci. U.S.A. 84, 600–604 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Lai, C. et al. Proc. natn. Acad. Sci. U.S.A. 84, 4337–4341 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Salzer, J. L., Holmes, W. P. & Colman, D. R. J. Cell Biol. 104, 957–965 (1987).

    Article  CAS  Google Scholar 

  17. Dulac, C. et al. Neuron 8, 1–20 (1992).

    Article  Google Scholar 

  18. Johnson, P. W. et al. Neuron 3, 377–385 (1989).

    Article  CAS  Google Scholar 

  19. Tropak, M. B., Johnson, P. W., Dunn, R. J. & Roder, J. C. Molec. Brain Res. 4, 143–155 (1988).

    Article  CAS  Google Scholar 

  20. Edwards, A. M. et al. Molec. cell. Biol. 8, 2655–2658 (1988).

    Article  CAS  Google Scholar 

  21. Umermori, H. et al. Nature 367, 572–576 (1994).

    Article  ADS  Google Scholar 

  22. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Cell 64, 693–702 (1991).

    Article  CAS  Google Scholar 

  23. Capecchi, M. Sci. Am. 270, 52–59 (March, 1994).

    Article  CAS  Google Scholar 

  24. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. Proc. natn. Acad. Sci. U.S.A. 90, 8424–8428 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Te Riele, H., Robanus, E. & Berns, A. Proc. natn. Acad. Sci. U.S.A. 89, 5128–5132 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Van Deursen, J. & Wieringa, B. Nucleic Acids Res. 20, 3815–3820 (1992).

    Article  CAS  Google Scholar 

  27. Wood, S. A., Allen, N. D., Rossant, J., Auerbach, A. & Nagy, A. Nature 365, 87–89 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Tropak, M., Gerlai, R. et al. Myelination in the absence of myelin-associated glycoprotein. Nature 369, 747–750 (1994). https://doi.org/10.1038/369747a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369747a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing