Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands

Abstract

CONTAMINATION of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow1–7. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive1,5–8. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access9. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contaminated aquifers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Salanitro, J. P. Ground Wat. Monitor. Remed. 13, 150–161 (1993).

    Article  CAS  Google Scholar 

  2. Acton, D. W. & Barker, J. F. J. Contamin. Hydrol. 9, 325–352 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Barker, J. K., Major, P. & Major, D. Ground Wat. Monitor. Rev. 7, 64–71 (1987).

    Article  CAS  Google Scholar 

  4. Gillham, R. W., Starr, R. C. & Miller, D. J. Ground Wat. 28, 858–862 (1990).

    Article  CAS  Google Scholar 

  5. Thomas, J. M. & Ward, C. H. Envir. Sci. Technol. 23, 760–766 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Major, D. W., Mayfield, C. I. & Barker, J. F. Ground Wat. 26, 8–14 (1988).

    Article  CAS  Google Scholar 

  7. Lee, M. D. et al. CRC Crit. Rev. Envir. Control 18, 29–89 (1988).

    Article  CAS  Google Scholar 

  8. Morgan, P. & Watkinson, R. J. Wat. Res. 26, 73–78 (1992).

    Article  CAS  Google Scholar 

  9. Lovley, D. R. Microbiol. Rev. 55, 259–287 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson, B. H., Smith, G. B. & Rees, J. F. Envir. Sci. Technol. 20, 997–1002 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Kuhn, E. P., Zeyer, J., Eicher, P. & Schwarzenbach, R. P. Appl. Envir. Microbiol. 54, 490–496 (1988).

    CAS  Google Scholar 

  12. Beller, H. R., Grbic-Galic, D. & Reinhard, M. Appl. Envir. Microbiol. 58, 786–793 (1992).

    CAS  Google Scholar 

  13. Edwards, E. A. & Grbic-Galic, D. Appl. Envir. Microbiol. 58, 2663–2666 (1992).

    CAS  Google Scholar 

  14. Grbic Galic, D. & Vogel, T. Appl. Envir. Microbiol. 53, 254–260 (1987).

    CAS  Google Scholar 

  15. Pardieck, D. L., Bouwer, E. J. & Stone, A. T. J. Contamin. Hydrol. 9, 221–242 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Anid, P. J., Alvarez, P. J. J. & Vogel, T. M. Wat. Res. 27, 685–691 (1993).

    Article  CAS  Google Scholar 

  17. Flyvbjerg, J., Arivn, E., Jensen, B. K. & Olsen, S. K. J. Contamin. Hydrol. 12, 133–150 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Barbaro, J. R., Barker, J. F., Lemon, L. A. & Mayfield, C. I. J. Contamin. Hydrol. 11, 245–272 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Hutchins, S. R., Sewell, G. W., Kovacs, D. A. & Smith, G. A. Envir. Sci. Technol. 25, 68–76 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Hutchins, S. R. Envir. Toxicol. Chem. 10, 1437–1448 (1991).

    Article  CAS  Google Scholar 

  21. Lovley, D. R. et al. Nature 339, 297–299 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Lyngkilde, J. & Christensen, T. H. J. Contamin. Hydrol. 10, 291–307 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Baedecker, M. J., Cozzarelli, I. M., Siegel, D. I., Bennett, P. C. & Eganhouse, R. P. Appl. Geochem. 8, 569–586 (1993).

    Article  CAS  Google Scholar 

  24. Arnold, R. G., DiChristina, T. J. & Hoffmann, M. R. Biotechnol. Bioengng. 32, 1081–1096 (1988).

    Article  CAS  Google Scholar 

  25. Vroblesky, D. A. & Chapelle, F. H. Wat. Resour. Res. 30, 1561–1570 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Lovley, D. R., Chapelle, F. H. & Woodward, J. C. Envir. Sci. Technol. (in the press).

  27. Lovley, D. R. & Phillips, E. J. P. Appl. Envir. Microbiol. 53, 2636–2641 (1987).

    CAS  Google Scholar 

  28. Roden, E. E. & Lovley, D. R. Appl. Envir. Microbiol. 59, 734–742 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovley, D., Woodward, J. & Chapelle, F. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370, 128–131 (1994). https://doi.org/10.1038/370128a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370128a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing