Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibition of Gl cyclin activity by the Ras/cAMP pathway in yeast

Abstract

IN the yeast Saccharomyces cerevisiae, commitment to cell division (Start) requires growth to a critical cell size1–3. The Gl cyclins Clnl, Cln2 and Cln3 activate the Cdc28 protein kinase and are rate-limiting activators of Start4–6. When glucose is added to cells growing in a poor carbon source, the critical cell size required for Start is reset from a small to a large size2,3,7. In yeast, glucose acts through Ras proteins to stimulate adenylyl cyclase, activating the three cyclic AMP-dependent protein kinases Tpkl, Tpk2 and Tpk3 (refs 8, 9). We find that stimulation of the Ras/cAMP pathway represses expression of CLN1, CLN2 and co-regulated genes, inhibiting Start. This helps explain the increase in critical size when cells are shifted from poor to rich medium. This connection between the molecules controlling growth (Ras/cAMP) and those controlling division (cyclins) helps explain how division is co-ordinated with growth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnston, G. C., Pringle, J. R. & Hartwell, L. H. Expl Cell Res. 105, 79–98 (1977).

    Article  CAS  Google Scholar 

  2. Johnston, G. C., Ehrhardt, C. W., Lorincz, A. & Carter, B. L. A. J. Bact. 137, 1–5 (1979).

    CAS  PubMed  Google Scholar 

  3. Lorincz, A. & Carter, B. L. A. J. gen. Microbiol. 113, 287–295 (1979).

    Article  Google Scholar 

  4. Nash, R., Tokiwa, G., Anand, S., Erickson, K. & Futcher, A. B. EMBO J. 7, 4335–4346 (1988).

    Article  CAS  Google Scholar 

  5. Cross, F. Molec. cell. biol 8, 4675–4684 (1988).

    Article  CAS  Google Scholar 

  6. Hadwiger, J. A., Wittenberg, C., Richardson, H. E., de Barros Lopes, M. & Reed, S. I. Proc. natn. Acad. Sci. U.S.A. 86, 6255–6259 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Jagadish, M. N. & Carter, B. L. A. Nature 269, 145–147 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Toda, T. et al. Cell 50, 277–287 (1987).

    Article  CAS  Google Scholar 

  9. Cannon, J. & Tatchell, K. Molec. cell. Biol. 7, 2653–2663 (1987).

    Article  CAS  Google Scholar 

  10. Thevelein, J. M. & Beullens M. J. gen. Microbiol. 131, 3199–3209 (1985).

    CAS  PubMed  Google Scholar 

  11. Cameron, S. et al. Cell 53, 555–566 (1988).

    Article  CAS  Google Scholar 

  12. Wilson, R. B. & Tatchell, K. Molec. cell. Biol. 8, 505–510 (1988).

    Article  CAS  Google Scholar 

  13. Wilson, R. B. et al. FEBS Lett. 325, 191–195 (1993).

    Article  CAS  Google Scholar 

  14. Baroni, M. D., Martegani, E., Monti, P. & Alberghina, L. Molec. cell. Biol. 9, 2715–2723 (1989).

    Article  CAS  Google Scholar 

  15. Baroni, M. D., Monti, P., Marconi, G. & Alberghina, L. Expl Cell Res. 201, 299–306 (1992).

    Article  CAS  Google Scholar 

  16. Mitsuzawa, H. Mol. gen. Genet. 243, 158–165 (1994).

    CAS  PubMed  Google Scholar 

  17. Breeden, L. & Nasmyth, K. Cell 48, 389–397 (1987).

    Article  CAS  Google Scholar 

  18. Ogas, J. et al. Cell 66, 1015–1026 (1991).

    Article  CAS  Google Scholar 

  19. Nasmyth, K. & Dirick, L. Cell 66, 995–1013 (1991).

    Article  CAS  Google Scholar 

  20. Lowndes, N. F., Johnson, A. L., Breeden, L. & Johnston, L. H. Nature 357, 505–508 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Dirick, L., Moll, T., Auer, T. & Nasmyth, K. Nature 357, 508–513 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Koch, C., Moll, T., Neuberg, M., Ahorn, H. & Nasmyth, K. Science 261, 1551–1557 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Epstein, C. & Cross, F. Genes Dev. 6, 1695–1706 (1992).

    Article  CAS  Google Scholar 

  24. Cross, F. R. & Tinkelenberg, A. H. Cell 65, 875–883 (1991).

    Article  CAS  Google Scholar 

  25. Dirick, L. & Nasmyth, K. Nature 351, 754–757 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Russell, M., Bradshaw-Rouse, J., Markwardt, D. & Heideman, W. Molec. Biol. Cell 4, 757–765 (1993).

    Article  CAS  Google Scholar 

  27. Tyers, M., Tokiwa, G., Nash, R. & Futcher, A. B. EMBO J. 11, 1773–1784 (1992).

    Article  CAS  Google Scholar 

  28. Wittenberg, C., Sugimoto, K. & Reed, S. I., Cell 62, 225–237 (1990).

    Article  CAS  Google Scholar 

  29. Tyers, M., Tokiwa, G. & Futcher, A. B. EMBO J. 12, 1955–1968 (1993).

    Article  CAS  Google Scholar 

  30. Thevelein, J. M. et al. J. gen. Microbiol. 133, 2191–2196 (1987).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokiwa, G., Tyers, M., Volpe, T. et al. Inhibition of Gl cyclin activity by the Ras/cAMP pathway in yeast. Nature 371, 342–345 (1994). https://doi.org/10.1038/371342a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371342a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing