Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular mechanism of cyclic-nucleotide-gated channel activation

Abstract

STUDIES on the activation of ligand- and voltage-gated ion channels have identified regions involved in both ligand binding1 and voltage sensing2, but relatively little is known about how such domains are coupled to channel opening. Here we investigate the structural basis for the activation of cyclic-nucleotide-gated channels, which are directly opened by cytoplasmic cyclic nucleotides3,4 but are structurally homologous to voltage-gated channels5–7. By constructing chimaeras between cyclic-nucleotide-gated channels cloned from bovine retinal photoreceptors8 and catfish olfactory neurons7, we identify two distinct domains that are important for ligand binding and channel gating. A putative α-helix in the carboxy-terminal binding domain determines the selectivity of the channel for activation by cGMP relative to cAMP. A domain in the amino-terminal region determines the ease with which channels open and thus influences agonist efficacy. We propose that channel opening is coupled to an allosteric conformational change in the binding site which enhances agonist binding. Thus, cyclic nucleotides activate the channel by binding tightly to the open state and stabilizing it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Karlin, A. Curr. Opin. Neurobiol. 2, 299–309 (1993).

    Article  Google Scholar 

  2. Stuhmer, W. et al. Nature 339, 597–603 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Fesenko, E. E., Kaoesnikov, S. S. & Lyubarsky, A. L. Nature 313, 310–313 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Nakamura, T. & Gold, G. H. Nature 325, 342–344 (1987).

    Article  Google Scholar 

  5. Jan, L. Y. & Jan, Y. N. Nature 345, 672 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Guy, H. R., Durell, S. R., Warmke, J., Drysdale, R. & Ganetzky, B. Science 254, 730 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Goulding, E. H. et al. Neuron 8, 45–58 (1992).

    Article  CAS  Google Scholar 

  8. Kaupp, U. B. et al. Nature 342, 762–766 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Castillo, J. & Katz, B. Proc. R. Soc. B 146, 369–381 (1957).

    ADS  Google Scholar 

  10. Fersht, A. Enzyme Structure and Mechanism 98–106, 311–317 (Freeman, New York, 1985).

    Google Scholar 

  11. Avis, J. M. & Fersht, A. R. Biochemistry 32, 5321–5326 (1993).

    Article  CAS  Google Scholar 

  12. Catterall, W. A. Science 243, 236–237 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Jackson, M. B. Biophys. J. 63, 1443–1444 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Weber, I. T. & Steitz, T. A. J. molec Biol. 198, 311–326 (1987).

    Article  CAS  Google Scholar 

  15. Shabb, J. M. & Corbin, J. D. J. biol. Chem. 267, 5723–5726 (1992).

    CAS  PubMed  Google Scholar 

  16. Miller, C. Science 252, 1092–1096 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Monod, J., Wyman, J. & Changeux, J.-P. J. molec. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  18. MacKinnon, R. Nature 350, 232–235 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Li, M., Jan, Y. N. & Jan, L. Y. Science 257, 1225–1230 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Shen, N. V., Chen, X., Boyer, M. M. & Pfaffinger, P. J. Neuron 11, 67–76 (1993).

    Article  CAS  Google Scholar 

  21. Babila, T. et al. Neuron 12, 615–626 (1994).

    Article  CAS  Google Scholar 

  22. Perutz, M. F. Nature 228, 726–739 (1990).

    Article  ADS  Google Scholar 

  23. Unwin, P. N. T. & Ennis, P. D. Nature 307, 609–613 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Goulding, E. H., Tibbs, G. R., Liu, D. & Siegelbaum, S. A. Nature 364, 61–64 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Zagotta, W. N., Hoshi, Y. & Aldrich, R. W. Science 250, 568–571 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Kramer, R. H., Goulding, E. & Siegelbaum, S. A. Neuron 12, 655–662 (1994).

    Article  CAS  Google Scholar 

  27. Liman, E. R., Tytgat, J. & Hess, P. Neuron 9, 861–871 (1992).

    Article  CAS  Google Scholar 

  28. Takio, K. et al. Biochemistry 23, 4207–4218 (1984).

    Article  CAS  Google Scholar 

  29. Titani, K. et al. Biochemistry 23, 4193–4199 (1984).

    Article  CAS  Google Scholar 

  30. Skoog, D. A. & West, D. M. Fundamentals of Analytical Chemistry 75–80 (CBS College, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goulding, E., Tibbs, G. & Siegelbaum, S. Molecular mechanism of cyclic-nucleotide-gated channel activation. Nature 372, 369–374 (1994). https://doi.org/10.1038/372369a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372369a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing