Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells

An Erratum to this article was published on 15 December 1994

Abstract

THE enzyme DNA topoisomerase II, which removes the caten-ations formed between the DNA molecules of sister chromatids during replication1 and is a structural component of chromosome cores2 , is needed for chromosome condensation in yeast3 and in Xenopus extracts4–6. Inhibitors of topoisomerase II arrest mam-malian cells before mitosis in the G2 phase of the cell cycle7, but also produce DNA damage, which causes arrest through established checkpoint controls8. It is open to question whether cells need topoisomerase II to leave G2, or control late-cycle progres-sion in response to its activity. Bisdioxopiperazines are topoisomerase II inhibitors that act without producing direct DNA damage9; the most potent, ICRF-193, blocks mammalian entry into but not exit from mitosis. Here we show that checkpoint-evading agents such as caffeine override this block to produce abortively condensed chromosomes, indicating that topoisomerase II is needed for complete condensation. We find that exit from G2 is regulated by a catenation-sensitive checkpoint mechanism which is distinct from the G2-damage checkpoint.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cook, P. R. Cell 66, 627–635 (1991).

    Article  CAS  Google Scholar 

  2. Ma, X. J., Saitoh, N. & Curtis, P. J. J. biol. Chem. 268, 6182–6188 (1993).

    CAS  PubMed  Google Scholar 

  3. Uemura, T. et al. Cell 50, 917–925 (1987).

    Article  CAS  Google Scholar 

  4. Wood, E. R. & Earnshaw, W. C. J. Cell Biol. 111, 2839–2850 (1990).

    Article  CAS  Google Scholar 

  5. Adachi, Y., Luke, M. & Laemmli, U.K. Cell 64, 137–148 (1991).

    Article  CAS  Google Scholar 

  6. Hirano, T. & Mitchison, T. J. J. Cell Biol. 120, 601–612 (1993).

    Article  CAS  Google Scholar 

  7. Kalwinsky, D. K., Look, A. T., Ducore, J. & Fridland, A. Cancer Res. 43, 1592–1597 (1983).

    CAS  PubMed  Google Scholar 

  8. Lock, R. B. & Ross, W. E. Cancer Res. 50, 3761–3766 (1990).

    CAS  PubMed  Google Scholar 

  9. Roca, J., Ishida, R., Berger, J. M., Andoh, T. & Wang, J. C. Proc. natn. Acad. Sci. U.S.A. 91, 1781–1785 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Tolmach, L. J. & Busse, P. M. Radiat. Res. 82, 374–392 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Yamashita, K. et al. EMBO J. 9, 4331–4338 (1990).

    Article  CAS  Google Scholar 

  12. Steinmann, K. E., Belinsky, G. S., Lee, D. & Schlegel, R. Proc. natn. Acad. Sci. U.S.A. 88, 6843–6847 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Creighton, A. M., Hellman, K. & Whitecross, S. Nature 222, 384–385 (1969).

    Article  ADS  CAS  Google Scholar 

  14. Sharpe, H. B. A., Field, E. O. & Hellman, K. Nature 226, 524–526 (1970).

    Article  ADS  CAS  Google Scholar 

  15. Creighton, A. M. Adv. Med. Oncol. Res. Educ. 5, 83–91 (1979).

    CAS  Google Scholar 

  16. Clarke, D. J., Johnson, R. T. & Downes, C. S. J. Cell Sci. 105, 563–569 (1993).

    CAS  PubMed  Google Scholar 

  17. Ishida, R. et al. Cancer Res. 51, 4909–4916 (1991).

    CAS  PubMed  Google Scholar 

  18. Ishimi, Y., Ishida, R. & Andoh, T. Molec. cell. Biol. 12, 4007–4014 (1992).

    Article  CAS  Google Scholar 

  19. Musk, S. R. R., Downes, C. S. & Johnson, R. T. J. Cell Sci. 90, 591–599 (1988).

    CAS  PubMed  Google Scholar 

  20. Musk, S. R. R., Pillidge, L., Johnson, R. T. & Downes, C. S. Biochim. biophys. Acta 1052, 53–62 (1990).

    Article  CAS  Google Scholar 

  21. Weinert, T. & Lydall, D. Sem. Canc. Biol. 4, 129–140 (1993).

    CAS  Google Scholar 

  22. Downes, C. S., Mulliger, A. M. & Johnson, R. T. Proc. natn. Acad. Sci. U.S.A. 88, 2616–2620 (1991).

    Article  Google Scholar 

  23. Gorbsky, G. J. Cancer Res. 54, 1042–1048 (1994).

    CAS  PubMed  Google Scholar 

  24. Shamu, C. E. & Murray, A. W. J. Cell Biol. 117, 921–934 (1992).

    Article  CAS  Google Scholar 

  25. Morgan, T. L. et al. Expl. Cell Res. 197, 125–136 (1991).

    Article  CAS  Google Scholar 

  26. Johnson, R. T., Downes, C. S. & Meyn, R. E. in The Cell Cycle: A Practical Approach (eds Fantes, P. & Brooks, R.) 1–24 (IRL, Oxford, 1994).

    Google Scholar 

  27. Ahnstrom, G. & Edvardsson, K.-A. Int. J. Radiat. Biol. 26, 493–497 (1974).

    CAS  Google Scholar 

  28. Squires, S., Johnson, R. T. & Collins, A. R. S. Mut. Res. 95, 389–404 (1982).

    Article  CAS  Google Scholar 

  29. Johnson, R. T. & Rao, P. N. Nature 226, 717–722 (1970).

    Article  ADS  CAS  Google Scholar 

  30. Rufas, J. S., Gimenez-Abian, J., Suja, J. A. & Garcia de la Vega, C., Genome 29, 706–712 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downes, C., Clarke, D., Mullinger, A. et al. A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. Nature 372, 467–470 (1994). https://doi.org/10.1038/372467a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372467a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing