Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and function of the multifunctional DNA-repair enzyme exonuclease III

Abstract

THE repair of DNA requires the removal of abasic sites, which are constantly generated in vivo both spontaneously1 and by enzymatic removal of uracil2, and of bases damaged by active oxygen species, alkylating agents and ionizing radiation3,4. The major apurinic/ apyrimidinic (AP) DNA-repair endonuclease in Escherichia coli is the multifunctional enzyme exonuclease III, which also exhibits 3′-repair diesterase, 3′→ 5′ exonuclease, 3′-phosphomonoesterase and ribonuclease activities5. We report here the 1.7 Å resolution crystal structure of exonuclease III which reveals a 2-fold symmetric, four-layered ap fold with similarities to both deoxyribo-nuclease I6 and RNase H7. In the ternary complex determined at 2.6 Å resolution, Mn2+ and dCMP bind to exonuclease III at one end of the αβ-sandwich, in a region dominated by positive electrostatic potential. Residues conserved among AP endonucleases from bacteria to man cluster within this active site and appear to participate in phosphate-bond cleavage at AP sites through a nucleophilic attack facilitated by a single bound metal ion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lindahl, T. Nature 362, 709–715 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Taylor, A. F. & Weiss, B. J. Bact. 151, 351–357 (1982).

    CAS  PubMed  Google Scholar 

  3. Sakumi, K. & Sekiguchi, M. Mutat. Res. 236, 161–172 (1990).

    Article  CAS  Google Scholar 

  4. Doetsch, P. W. & Cunningham, R. P. Mutat. Res. 236, 173–201 (1990).

    Article  CAS  Google Scholar 

  5. Demple, B. & Harrison, L. A. Rev. Biochem. 63, 915–948 (1994).

    Article  CAS  Google Scholar 

  6. Oefner, C. & Suck, D. J. molec. Biol. 192, 605–632 (1986).

    Article  CAS  Google Scholar 

  7. Katayanagi, K. et al. Nature 347, 306–309 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Richardson, J. S. Adv. Prot. Chem. 34, 167–339 (1981).

    CAS  Google Scholar 

  9. Beese, L. S. & Steitz, T. A. EMBO J. 10, 25–33 (1991).

    Article  CAS  Google Scholar 

  10. Lahm, A. & Suck, D. J. molec. Biol. 221, 645–667 (1991).

    Article  Google Scholar 

  11. Weston, S. A., Lahm, A. & Suck, D. J. molec. Biol. 226, 1237–1256 (1992).

    Article  CAS  Google Scholar 

  12. Katayanagi, K. et al. Nature 347, 306–309 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Kayana, S. et al. Eur. J. Biochem. 198, 437–440 (1991).

    Article  Google Scholar 

  14. Katayanagi, K., Okumura, M. & Morikawa, K. Prot. Struct. Funct. Genet. 17, 337–346 (1993).

    Article  CAS  Google Scholar 

  15. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Science 265, 346–355 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Kuo, C.-F., McRee, D. E., Cunningham, R. P. & Tainer, J. A. J. molec. Biol. 229, 239–242 (1993).

    Article  CAS  Google Scholar 

  17. Read, R. J. Acta crystallogr. A42, 140–149 (1986).

    Article  Google Scholar 

  18. McRee, D. E. J. molec. Graphics 10, 44–46 (1993).

    Article  Google Scholar 

  19. Brünger, A., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  20. Borgstahl, G. E. O., Rogers, P. H. & Arnone, A. J. molec. Biol. 236, 817–830 (1994).

    Article  CAS  Google Scholar 

  21. Saporito, S. M., Smith-White, B. J. & Cunningham, R. P. J. Bact. 170, 4542–4547 (1988).

    Article  CAS  Google Scholar 

  22. Demple, B., Herman, T. & Chen, D. S. Proc. natn. Acad. Sci. U.S.A. 88, 11450–11454 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Seki, S. et al. J. biol. Chem. 266, 20797–20802 (1991).

    CAS  PubMed  Google Scholar 

  24. Robson, C. N., Milne, A. M., Pappin, D. J. C. & Hickson, I. D. Nucleic Acids Res. 19, 1087–1092 (1991).

    Article  CAS  Google Scholar 

  25. Lipman, D. J., Altschul, S. F. & Kececioglu, J. D. Proc. natn. Acad. Sci. U.S.A. 86, 4412–4415 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mol, C., Kuo, CF., Thayer, M. et al. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374, 381–386 (1995). https://doi.org/10.1038/374381a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374381a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing