Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of cytosolic phospholipase A2 in allergic response and parturition

Abstract

Phospholipase A2 (PLA2) comprises a superfamily of enzymes that hydrolyse the ester bond of phospholipids at the sn-2 position1,2,3. Among the members of this superfamily, cytosolic PLA2 has attracted attention because it preferentially hydrolyses arachidonoyl phospholipids and is activated by submicromolar concentrations of Ca2+ ions and by phosphorylation by mitogen-activated protein kinases (MAP kinases)4,5,6,7,8. Here we investigate the function of cytosolic PLA2 in vivo by using homologous recombination to generate mice deficient in this enzyme. These mice showed a marked decrease in their production of eicosanoids and platelet-activating factor in peritoneal macrophages. Their ovalbumin-induced anaphylactic responses were significantly reduced, as was their bronchial reactivity to methacholine. Female mutant mice failed to deliver offspring, but these could be rescued by administration of a progesterone-receptor antagonist to the mother at term. Considered together with previous findings9,10,11,12,13,14,15, our results indicate that cytosolic PLA2 plays a non-redundant role in allergic responses and reproductive physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of the cPLA2 gene in mice.
Figure 2: Disruption of the cPLA2 gene in mice.
Figure 3: Disruption of the cPLA2 gene in mice.
Figure 4: Disruption of the cPLA2 gene in mice.
Figure 5: Production of eicosanoids and PAF in peritoneal macrophages.
Figure 6: Production of eicosanoids and PAF in peritoneal macrophages.
Figure 7: Production of eicosanoids and PAF in peritoneal macrophages.
Figure 8: Allergic responses in the bronchopulmonary system.
Figure 9: Allergic responses in the bronchopulmonary system.
Figure 10: Allergic responses in the bronchopulmonary system.

Similar content being viewed by others

References

  1. Dennis, E. A. The growing phospholipase A2 superfamily of signal transduction enzymes. Trends Biochem. Sci. 22, 1–2 (1997).

    Article  CAS  Google Scholar 

  2. Prescott, S. M. Athematic series on phospholipases. J. Biol. Chem. 272, 15043 (1997).

    Article  CAS  Google Scholar 

  3. Murakami, M., Nakatani, Y., Atsumi, G.-I., Inoue, K. & Kudo, I. Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 17, 225–283 (1997).

    Article  CAS  Google Scholar 

  4. Leslie, C. C. Properties and regulation of cytosolic phospholipase A2. J. Biol. Chem. 272, 16709–16712 (1997).

    Article  CAS  Google Scholar 

  5. Clark, J. D. et al. Anovel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 65, 1043–1051 (1991).

    Article  CAS  Google Scholar 

  6. Sharp, J. D. et al. Molecular cloning and expression of human Ca2+-sensitive cytosolic phospholipase A2. J. Biol. Chem. 266, 14850–14853 (1991).

    Article  CAS  Google Scholar 

  7. Lin, L. L. et al. cPLA2 is phosphorylated and activated by MAP kinase. Cell 72, 269–278 (1993).

    Article  CAS  Google Scholar 

  8. Kramer, R. M. et al. p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. J. Biol. Chem. 271, 27723–27729 (1996).

    Article  CAS  Google Scholar 

  9. Chen, X. S., Sheller, J. R., Johnson, E. N. & Funk, C. D. Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature 372, 179–182 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Goulet, J. L., Snouwaert, J. N., Latour, A. M., Coffman, T. M. & Koller, B. H. Altered inflammatory responses in leukotriene-deficient mice. Proc. Natl Acad. Sci. USA 91, 12852–12856 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Irvin, C. G., Tu, Y.-P., Sheller, J. R. & Funk, C. D. 5-Lipoxygenase products are necessary for ovalbumin-induced airway responsiveness in mice. Am. J. Physiol. 272, L1053–L1058 (1997).

    CAS  PubMed  Google Scholar 

  12. Langenbach, R. et al. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell 83, 483–492 (1995).

    Article  CAS  Google Scholar 

  13. Dinchuk, J. E. et al. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature 378, 406–409 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Morham, S. G. et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 83, 473–482 (1995).

    Article  CAS  Google Scholar 

  15. Sugimoto, Y. et al. Failure of parturition in mice lacking the prostaglandin F receptor. Science 277, 681–683 (1997).

    Article  CAS  Google Scholar 

  16. Sharp, J. D. et al. Serine 228 is essential for catalytic activities of 85-kDa cytosolic phospholipase A2. J. Biol. Chem. 269, 23250–23254 (1994).

    Article  CAS  Google Scholar 

  17. Currie, S., Roberts, E. F., Spaethe, S. M., Roehm, N. W. & Kramer, R. M. Phosphorylation and activation of Ca2+-sensitive cytosolic phospholipase A2 in MCII mast cells mediated by high-affinity Fc receptor for IgE. Biochem. J. 304, 923–928 (1994).

    Article  CAS  Google Scholar 

  18. Nakatani, Y., Murakami, M., Kudo, I. & Inoue, K. Dual regulation of cytosolic phospholipase A2 in mast cells after cross-linking of Fc epsilon-receptor. J. Immunol. 153, 796–803 (1994).

    CAS  PubMed  Google Scholar 

  19. Glover, S. et al. Translocation of the 85-kDa phospholipase A2 from cytosol to the nuclear envelope in rat basophilic leukemia cells stimulated with calcium ionophore or IgE/antigen. J. Biol. Chem. 270, 15359–15367 (1995).

    Article  CAS  Google Scholar 

  20. Oettgen, H. C. et al. Active anaphylaxis in IgE-deficient mice. Nature 370, 367–370 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Ishii, S. et al. Bronchial hyperreactivity, increased endotoxin lethality and melanocytic tumorigenesis in transgenic mice overexpressing platelet-activating factor receptor. EMBO J. 16, 133–142 (1997).

    Article  CAS  Google Scholar 

  22. Goldberg, V. J. & Ramwell, P. W. Role of prostaglandins in reproduction. Physiol. Rev. 55, 325–351 (1975).

    Article  CAS  Google Scholar 

  23. O'Neill, C. et al. Supplementation of in-vitro fertilisation culture medium with platelet activating factor. Lancet 2, 769–772 (1989).

    Article  CAS  Google Scholar 

  24. Dudley, D. J., Branch, D. W., Edwin, S. S. & Mitchell, M. D. Induction of preterm birth in mice by RU486. Biol. Reprod. 55, 992–995 (1996).

    Article  CAS  Google Scholar 

  25. MacPhee, M. et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell 81, 957–966 (1995).

    Article  CAS  Google Scholar 

  26. Kennedy, B. P. et al. Anatural disruption of the secretory group II phospholipase A2 gene in inbred mouse strains. J. Biol. Chem. 270, 22378–22385 (1995).

    Article  CAS  Google Scholar 

  27. Bingham, C. O. II et al. Aheparin-sensitive phospholipase A2 and prostaglandin endoperoxide synthase-2 are functionally linked in the delayed phase of prostaglandin D2 generation in mouse bone marrow-derived mast cells. J. Biol. Chem. 271, 25936–23544 (1996).

    Article  CAS  Google Scholar 

  28. Takayama, K. et al. Purification and characterization of human platelet phospholipase A2 which preferentially hydrolyzes an arachidonoyl residue. FEBS Lett. 282, 326–330 (1991).

    Article  CAS  Google Scholar 

  29. Aoki, Y. et al. Aradioreceptor binding assay for platelet-activating factor (PAF) using membranes form CHO cells expressing human PAF receptor. J. Immunol. Meth. 186, 225–231 (1995).

    Article  CAS  Google Scholar 

  30. Nagase, T. et al. Intercellular adhesion molecule-1 mediates acid aspiration-induced lung injury. Am. J. Respir. Crit. Care Med. 154, 504–510 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Kudo for murine cPLA2 cDNA; Y. Hara, Y. Matsumoto, Y. Sakamoto, Y. Suzuki, C. Suzuki, T. Jin and M. Ito for technical assistance; D. W. Saffen for critically reading the manuscript; and S. Narumiya, Y. Taketani, M. Momoeda, T. Izumi, T. Yokomizo, M. Aihara, J. D. Clark and M. Murakami for their valuable suggestions. This work was supported in part by grants-in aid from the Ministry of Education, Science, Sports and Culture of Japan, and by grants form the Human Science Foundation and Senri Life Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Shimizu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uozumi, N., Kume, K., Nagase, T. et al. Role of cytosolic phospholipase A2 in allergic response and parturition. Nature 390, 618–622 (1997). https://doi.org/10.1038/37622

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37622

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing