Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome

Abstract

THE ribosome is formed by assembly of proteins and nucleic acids, and synthesizes proteins according to genetic instructions in all organisms. Many of the biochemical steps of this fundamental process are known, but a detailed understanding requires a well-defined structural model of the ribosome. Electron microscopy combined with image reconstruction of two-dimensional crystals1á¤-3 or single ribosomes4 has been the most promising technique, but the resolution of the resulting models has been insufficient. Here we report a 25-Å reconstruction of the ribosome from Escherichia coli, obtained by combining 4,300 projections of ice-embedded single particles. Our new reconstruction reveals a channel in the small ribosomal subunit and a bifurcating tunnel in the large sub-unit which may constitute pathways for the incoming message and the nascent polypeptide chain, respectively. Based on these new findings, a three-dimensional model of the basic framework of protein synthesis is presented.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yonath, A., Leonard, K. R. & Wittmann, H. G. Science 236, 813–816 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Eisenstein, M. et al. Biochimie 73, 879–886 (1991).

    Article  CAS  Google Scholar 

  3. Yonath, A. & Wittmann, H. G. Trends biochem. Sci. 14, 329–335 (1989).

    Article  CAS  Google Scholar 

  4. Frank, J., Penczek, P., Grassucci, R. & Srivastava, S. J. Cell Biol. 115, 597–605 (1991).

    Article  CAS  Google Scholar 

  5. Lepault, J., Booy, F. P. & Dubochet, J. J. Microsc. 129, 89–102 (1983).

    Article  CAS  Google Scholar 

  6. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. EMBO J. 6, 1107–1114 (1987).

    Article  CAS  Google Scholar 

  7. Penczek, P., Grassucci, R. & Frank, J. Ultramicroscopy 53, 251–270 (1994).

    Article  CAS  Google Scholar 

  8. Frank, J., Verschoor, A., Radermacher, M. & Wagenknecht, T. in Ribosomes (eds Hill, W. E.et al.) 107–113 (American Society for Microbiology, Washington DC, 1990).

    Google Scholar 

  9. Montesano-Roditis, L. & Glitz, D. G. J. biol. Chem. 269, 6458–6470 (1994).

    CAS  PubMed  Google Scholar 

  10. Lim, V. et al. Nucleic Acids Res. 20, 2627–2637 (1992).

    Article  CAS  Google Scholar 

  11. Shatsky, I., Bakin, A. V., Bogdanov, A. A. & Vasiliev, V. D. Biochimie 73, 937–945 (1991).

    Article  CAS  Google Scholar 

  12. Malhotra, A. & Harvey, S. C. J. molec. Biol. 240, 308–340 (1994).

    Article  CAS  Google Scholar 

  13. Oakes, M. I. & Lake, J. A. J. molec. Biol. 211, 897–906 (1990).

    Article  CAS  Google Scholar 

  14. Bernabeu, C. & Lake, J. A. Proc. natn. Acad. Sci. U.S.A. 79, 3111–3115 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Avila-Sakar, A. J. et al. J. molec. Biol. 239, 689–697 (1994).

    Article  CAS  Google Scholar 

  16. Blobel, G. & Sabatini, D. D. J. Cell Biol. 45, 130–145 (1970).

    Article  CAS  Google Scholar 

  17. Crowley, K. S., Reinhart, G. D. & Johnson, A. E. Cell 73, 1101–1115 (1993).

    Article  CAS  Google Scholar 

  18. Kudlicki, W. et al. J. biol. Chem. 270, 10650–10657 (1995).

    Article  CAS  Google Scholar 

  19. Easterwood, T. R., Major, F., Malhotra, A. & Harvey, S. C. Nucleic Acids Res. 22, 3779–3786 (1994).

    Article  CAS  Google Scholar 

  20. Sundaralingam, M., Brenman, T., Yathindra, N. & Ichikawa, T. in Structure and Conformationof Nucleic Acids and Protein-Nucleic Acid Interactions (eds Sundaralingam, M. & Rao, S. T.) 101–115 (University Park, Baltimore, 1975).

    Google Scholar 

  21. Schrōder, R. R., Hofmann, W. & Menetret, J.-F. J. struct, Biol. 105, 28–34 (1990).

    Article  Google Scholar 

  22. Penczek, P., Radermacher, M. & Frank, J. Ultramicroscopy 40, 33–53 (1992).

    Article  CAS  Google Scholar 

  23. Frank, J. Q. Rev. Biophys. 23, 281–329 (1990).

    Article  CAS  Google Scholar 

  24. Gilbert, P. J. theor. Biol. 36, 105–117 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, J., Zhu, J., Penczek, P. et al. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376, 441–444 (1995). https://doi.org/10.1038/376441a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376441a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing