Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An extended microtubule-binding structure within the dynein motor domain

Abstract

Flagellar dynein was discovered over 30 years ago as the first motor protein capable of generating force along microtubules1. A cytoplasmic form of dynein has also been identified which is involved in mitosis and a wide range of other intracellular movements2 (reviewed in ref. 3). Rapid progress has been made on understanding the mechanism of force production by kinesins and myosins4,5,6,7,8. In contrast, progress in understanding the dyneins has been limited by their great size (relative molecular mass 1,000K–2,000K) and subunit complexity. We now report evidence that the entire carboxy-terminal two-thirds of the 532K force-producing heavy chain subunit is required for ATP-binding activity. We further identify a microtubule-binding domain, which, surprisingly, lies well downstream of the entire ATPase region and is predicted to form a hairpin-like stalk. Direct ultrastructural analysis of a recombinant fragment confirms this model, and suggests that the mechanism for dynein force production differs substantially from that of other motor proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of a dynein heavy-chain point mutation on VO4-mediated photocleavage.
Figure 2: Summary of recombinant dynein heavy-chain behaviour in VO4 photocleavage and microtubule binding assays.
Figure 3: Co-distribution of mutant dynein heavy chain with microtubules.
Figure 5: Structural and functional predictions for the dyein stalk.
Figure 4: Microtubule-binding and electron microscopic analysis of recombinant microtubule binding domain.

Similar content being viewed by others

References

  1. Gibbons, I. R. & Rowe, A. Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149, 424–426 (1965).

    Article  ADS  CAS  Google Scholar 

  2. Paschal, B. M. & Vallee, R. B. Retrograde transport by the microtubule associated protein MAP 1C. Nature 330, 181–183 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Vallee, R. B. & Sheetz, M. P. Targeting of motor proteins. Science 271, 1539–1544 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J. & Vale, R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Sablin, E. P., Kull, F. J., Cooke, R., Vale, R. D. & Fletterick, R. J. Crystal structure of the motor domain of the kinesin-related motor ncd. Nature 380, 555–559 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Woehlke, G. et al. Microtubule interaction site of the kinesin motor. Cell 90, 207–216 (1997).

    Article  CAS  Google Scholar 

  7. Rayment, I. et al. The three-dimensional structure of myosin subfragment 1: a molecular motor. Science 261, 50–58 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Ruppel, K. M. & Spudich, J. A. Structure–function analysis of the motor domain of myosin. Annu. Rev. Cell Dev. Biol. 12, 543–573 (1996).

    Article  CAS  Google Scholar 

  9. Porter, M. E. & Johnson, K. A. Dynein structure and function. Annu. Rev. Cll Biol. 5, 119–151 (1989).

    Article  CAS  Google Scholar 

  10. Holzbaur, E. L. F. & Vallee, R. B. Dyneins: molecular structure and cellular function. Annu. Rev. Cell Biol. 10, 339–372 (1994).

    Article  CAS  Google Scholar 

  11. Mikami, A., Paschal, B. M., Mazumdar, M. & Vallee, R. B. Molecular cloning of the retrograde transport motor cytoplasmic dynein (MAP 1C). Neuron 10, 787–796 (1993).

    Article  CAS  Google Scholar 

  12. Mazumdar, M., Mikami, A., Gee, M. A. & Vallee, R. B. In vitro motility from recombinant dynein heavy chain. Proc. Natl Acad. Sci. USA 93, 6552–6556 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Gibbons, I. R. et al. Photosensitized cleavage of dynein heavy chains: cleavage at the “V1 site” by irradiation at 365 nm in the presence of ATP and vanadate. J. Biol. Chem. 262, 2780–2786 (1987).

    Article  CAS  Google Scholar 

  14. Gibbons, I. R., Gibbons, B. H., Mocz, G. & Asai, D. J. Multiple nucleotide-binding sites in the sequence of dynein β heavy chain. Nature 352, 640–643 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Ogawa, K. Four ATP binding sites in the midregion of the β-heavy chain of dynein. Nature 352, 643–645 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Koonce, M. P. & Samso, M. Overexpression of cytoplasmic dynein's globular head causes a collapse of the interphase microtubule network in Dictyostelium. Mol. Biol. Cell 7, 935–948 (1996).

    Article  CAS  Google Scholar 

  17. Kanai, Y. et al. Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA. J. Cell Biol. 109, 1173–1184 (1989).

    Article  CAS  Google Scholar 

  18. Mitchell, D. R. & Brown, K. S. Sequence analysis of the Chlamydomonas alpha and beta dynein heavy chain genes. J. Cell Sci. 107, 635–644 (1994).

    CAS  PubMed  Google Scholar 

  19. Biou, V., Yaremchuk, A., Tukalo, M. & Cusack, S. Acrystal structure of T. Thermophilus seryl-tRNA synthetase complexed with tRNASer. Science 263, 1404–1410 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Stebbins, C. E. et al. Crystal structure of the GreA transcript cleavage factor from Escherichia coli. Nature 373, 636–640 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Goodenough, U. W. & Heuser, J. E. Substructure of the outer dynein arm. J. Cell Biol. 95, 798–815 (1982).

    Article  CAS  Google Scholar 

  22. Goodenough, U. W. & Heuser, J. E. Structural comparison of purified dynein proteins with in situ dynein arms. J. Mol. Biol. 180, 1083–1118 (1984).

    Article  CAS  Google Scholar 

  23. Amos, L. A. Brain dynein crossbridges microtubules into bundles. J. Cell Sci. 93, 19–28 (1989).

    CAS  PubMed  Google Scholar 

  24. Haimo, L., Telzer, B. R. & Rosenbaum, J. L. Dynein binds to and crossbridges cytoplasmic microtubules. Proc. Natl Acad. Sci. USA 76, 5759–5763 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Porter, M. E., Knott, J. A., Gardner, L. C., Mitchell, D. R. & Dutcher, S. K. Mutations in the SUP-PF-1 locus of Chlamydomonas reinhardtii identify a regulatory domain in the β-dynein heavy chain. J. Cell Biol. 126, 1495–1507 (1994).

    Article  CAS  Google Scholar 

  26. Smith, E. F. & Sale, W. S. Regulation of dynein-driven microtubule sliding by the radial spokes in flagella. Science 257, 1557–1559 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Heuser, J. E. Procedure for freeze-drying molecules adsorbed to mica flakes. J. Mol. Biol. 169, 155–195 (1983).

    Article  CAS  Google Scholar 

  28. Steuer, E. R., Heuser, J. E. & Sheetz, M. P. Cytoplasmic dynein and ciliary outer arm dynein: a structural comparison. Cell Motil. Cytoskel. 11, 200–201 (1988).

    Google Scholar 

  29. Koonce, M. P., Grissom, P. M. & McIntosh, J. R. Dynein from Dictyostelium: Primary structure comparisons between a cytoplasmic motor enzyme and flagellar dynein. J. Cell Biol. 119, 1597–1604 (1992).

    Article  CAS  Google Scholar 

  30. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Mikami, P. Okamoto, S. Hughes, C. Echeverri, E. Luna, C. Wilkerson and U. Goodenough for discussions; P. McNulty for assistance in the preparation of this manuscript; R. Roth for technical assistance; M. Morgan for computer graphics for the EM images; E. Steuer for cytoplasmic dynein; and U. Goodenough for axonemal dynein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Vallee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gee, M., Heuser, J. & Vallee, R. An extended microtubule-binding structure within the dynein motor domain. Nature 390, 636–639 (1997). https://doi.org/10.1038/37663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37663

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing