Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for DNA bending by the architectural transcription factor LEF-1

Abstract

LYMPHOID enhancer-binding factor (LEF-1) and the closely related T-cell factor 1 (TCF-1) are sequence-specific and cell-type-specific DNA-binding proteins that play important regulatory roles in organogenesis and thymocyte differentiation1–5. LEF-1 participates in regulation of the enhancer associated with the T cell receptor (TCR)-α gene by inducing a sharp bend in the DNA and facilitating interactions between Ets-1, PEBP2-α, and ATF/ CREB transcription factors bound at sites flanking the LEF-1 site1,2,6,7. It seems that LEF-1 plays an architectural role in the assembly and function of this regulatory nucleoprotein complex7,8. LEF-1 recognizes a specific nucleotide sequence through a high-mobility-group (HMG) domain1,2. Proteins containing HMG domains bind DNA in the minor groove, bend the double helix6,9,10, and recognize four-way junctions and other irregular DNA structures9,11. Here we report the solution structure of a complex of the LEF-1 HMG domain and adjacent basic region with its cognate DNA. The structure reveals the HMG domain bound in the widened minor groove of a markedly distorted and bent double helix. The basic region binds across the narrowed major groove and contributes to DNA recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Travis, A., Amsterdam, A., Belanger, C. & Grosschedl, R. Genes Dev. 5, 880–894 (1991).

    Article  CAS  Google Scholar 

  2. Waterman, M. L., Fischer, W. H. & Jones, K. A. Genes Dev. 5, 656–669 (1991).

    Article  CAS  Google Scholar 

  3. Oosterwegel, M. et al. J. exp. Med. 173, 1133–1142 (1991).

    Article  CAS  Google Scholar 

  4. Van Genderen, C. et al. Genes Dev. 8, 2691–2703 (1994).

    Article  CAS  Google Scholar 

  5. Verbeek, S. et al. Nature 374, 70–74 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Giese, K., Cox, J. & Grosschedl, R. Cell 69, 185–195 (1992).

    Article  CAS  Google Scholar 

  7. Giese, K., Kingsley, C., Kirshner, J. R. & Grosschedl, R. Genes Dev. 9, 995–1008 (1995).

    Article  CAS  Google Scholar 

  8. Grosschedl, R., Giese, K. & Pagel, J. Trends Genet. 10, 94–100 (1994).

    Article  CAS  Google Scholar 

  9. Ferrari, S. et al. EMBO J. 11, 4497–4506 (1992).

    Article  CAS  Google Scholar 

  10. Paull, T. T., Haykinson, M. J. & Johnson, R. C. Genes Dev. 7, 1521–1534 (1993).

    Article  CAS  Google Scholar 

  11. Pil, P. M. & Lippard, S. J. Science 256, 234–237 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Weir, H. M. et al. EMBO J. 12, 1311–1319 (1993).

    Article  CAS  Google Scholar 

  13. Read, C. M., Cary, P. D., Crane-Robinson, C., Driscoll, P. C. & Norman, D. G. Nucleic Acids Res. 21, 3427–3436 (1993).

    Article  CAS  Google Scholar 

  14. Jones, D. N. M. et al. Structure 2, 609–627 (1994).

    Article  CAS  Google Scholar 

  15. Giese, K., Amsterdam, A. & Grosschedl, R. Genes Dev. 5, 2567–2578 (1991).

    Article  CAS  Google Scholar 

  16. van de Wetering, M. & Clevers, H. EMBO J. 11, 3039–3044 (1992).

    Article  CAS  Google Scholar 

  17. Peters, R. et al. Biochemistry 34, 4569–4576 (1995).

    Article  CAS  Google Scholar 

  18. Carlsson, P., Waterman, M. L. & Jones, K. A. Genes Dev. 7, 2418–2430 (1993).

    Article  CAS  Google Scholar 

  19. Read, C. M., Cary, P. D., Preston, N. S., Lnenicek-Allen, M. & Crane-Robinson, C. EMBO J. 13, 5639–5646 (1994).

    Article  CAS  Google Scholar 

  20. Harley, V. R., Lovell-Badge, R. & Goodfellow, P. N. Nucleic Acids Res. 22, 1500–1501 (1994).

    Article  CAS  Google Scholar 

  21. Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. Nature 365, 512–520 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Kim, J. L., Nikolov, D. B. & Burley, S. K. Nature 365, 520–528 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Schumacher, M. A., Choi, K. Y., Zalkin, H. & Brennan, R. G. Science 266, 763–770 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Marion, D., Kay, L. E., Sparks, S. W., Torchia, D. A. & Bax, A. J. Am. chem. Soc. 111, 1515–1517 (1989).

    Article  CAS  Google Scholar 

  25. Güntert, P., Braun, W. & Wüthrich, K. J. molec. Biol. 217, 517–530 (1991).

    Article  Google Scholar 

  26. Güntert, P. & Wüthrich, K. J. Biomol. NMR 1, 447–456 (1991).

    Article  Google Scholar 

  27. Weiner, S. J., Kollman, P. A., Nguyen, D. T. & Case, D. A. J. comput. Chem. 7, 230–252 (1986).

    Article  CAS  Google Scholar 

  28. Seip, S., Balbach, J. & Kessler, H. J. magn. Reson. B104, 172–179 (1994).

    Article  CAS  Google Scholar 

  29. Otting, G. & Wüthrich, K. Q. Rev. Biophys. 23, 39–96 (1990).

    Article  CAS  Google Scholar 

  30. Lavery, R. & Sklenár, V. J. biomolec. Struct. Dyn. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

  31. Werner, M. H., Huth, J. R., Gronenborn, A. M. & Clore, G. M. Cell 81, 705–714 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, J., Li, X., Case, D. et al. Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376, 791–795 (1995). https://doi.org/10.1038/376791a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376791a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing