Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for inhibition of receptor protein-tyrosine phosphatase-α by dimerization

Abstract

RECEPTOR-LIKE protein-tyrosine phosphatases (RPTPs), like their non-receptor counterparts, regulate the level of phosphotyrosine-containing proteins derived from the action of protein-tyrosine kineses1. RPTPs are type-I integral membrane proteins which contain one or two catalytic domains in their cytoplasmic region2. It is not known whether extracellular ligands regulate the activity of RPTPs. Here we describe the crystal structure of the membrane-proximal catalytic domain (D1) of a typical RPTP, murine RPTPα. Significant structural deviations from the PTP1B fold reside within the amino-terminal helix–turn–helix segment of RPTPαD1 (residues 214 to 242) and a distinctive two-stranded β-sheet formed between residues 211–213 and 458–461. The turn of the N-terminal segment inserts into the active site of a dyad-related D1 monomer. On the basis of two independent crystal structures, sequence alignments, and the reported biological activity of EGF receptor/CD45 chimaeras3, we propose that dimerization and active-site blockage is a physiologically important mechanism for downregulating the catalytic activity of RPTPα and other RPTPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hunter, T. Cell 80, 225–236 (1995).

    Article  CAS  Google Scholar 

  2. Mourey, R. J. & Dixon, J. E. Curr. Opin. Genet. Dev. 4, 31–39 (1994).

    Article  CAS  Google Scholar 

  3. Desai, D. M., Sap, J., Schlessinger, J. & Weiss, A. Cell 73, 541–554 (1993).

    Article  CAS  Google Scholar 

  4. Peles, E. et al. Cell 82, 251–260 (1995).

    Article  CAS  Google Scholar 

  5. den Hertog, J., Tracy, S. & Hunter, T. EMBO J. 13, 3020–3032 (1994).

    Article  CAS  Google Scholar 

  6. Janin, J. & Chothia, C. J. biol. Chem. 265, 16027–16030 (1990).

    CAS  PubMed  Google Scholar 

  7. Schmitz, K. S. An Introduction to Dynamic Light Scattering by Macromolecules (Academic, Boston, MA, 1990).

    Google Scholar 

  8. Barford, D., Flint, A. J. & Tonks, N. K. Science 263, 1397–1404 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Stuckey, J. A. et al. Nature 370, 571–575 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Schubert, H. L., Fauman, E. B., Stuckey, J. A., Dixon, J. E. & Saper, M. Protein Sci. 4, 1904–1913 (1995).

    Article  CAS  Google Scholar 

  11. Jia, Z., Barford, D., Flint, A. J. & Tonks, N. K. Science 268, 1754–1758 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Zhang, Z. Y., Wang, Y. & Dixon, J. E. Proc. natn. Acad. Sci. U.S.A. 91, 1624–1627 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Tracy, S., van der Geer, P. & Hunter, T. J. biol. Chem. 270, 10587–10594 (1995).

    Article  CAS  Google Scholar 

  14. Takeda, A., Wu, J. J. & Maizel, A. L. J. biol. Chem. 267, 16651–16659 (1992).

    CAS  PubMed  Google Scholar 

  15. Otwinowski, Z. Data Collection and Processing (SERC Daresbury Laboratory, Warrington, 1993).

    Google Scholar 

  16. Collaborative Computing Project No. 4 Acta crystallogr. D50, 760–763 (1994).

  17. Navaza, J. Acta crystallogr. A50, 157–163 (1994).

    Article  Google Scholar 

  18. Upson, C. et al. IEEE Comput. Graphics Appli. 9(4), 30–42 (1989).

    Article  Google Scholar 

  19. Wild, D. L., Tucker, P. A. & Choe, S. J. molec. Graphics 13, 291–298 (1995).

    Article  CAS  Google Scholar 

  20. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Acta crystallogr. A47, 110–119 (1991).

    Article  Google Scholar 

  21. Brunger, A. T. X-PLOR, Version 3.1. (Yale Univ. Press, New Haven, CT 1992).

    Google Scholar 

  22. Lamzin, V. S. & Wilson, K. S. Acta crystallogr. D49, 127–149 (1993).

    Article  Google Scholar 

  23. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. J. appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  24. Huang, C. C., Pettersen, E. F., Klein, T. E. & Langridge, R. J. molec. Graphics 9, 230–236 (1991).

    Article  CAS  Google Scholar 

  25. Ferrin, T. E., Huang, C. C., Jarvis, L. E. & Langridge, R. J. molec. Graphics 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  26. Evans, S. V. J. molec. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  27. Goldstein, B. J. Phosphoprotein Phosphatases 1: Tyrosine Phosphatases (Academic, London, 1995).

    Google Scholar 

  28. Sap, J., D'Eustachio, P., Givol, D. & Schlessinger, J. Proc. natn. Acad. Sci. U.S.A. 87, 6112–6116 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilwes, A., den Hertog, J., Hunter, T. et al. Structural basis for inhibition of receptor protein-tyrosine phosphatase-α by dimerization. Nature 382, 555–559 (1996). https://doi.org/10.1038/382555a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382555a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing