Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths

Abstract

PHOTONIC crystals are artificial structures having a periodic dielectric structure designed to influence the behaviour of photons in much the same way that the crystal structure of a semiconductor affects the properties of electrons1. In particular, photonic crystals forbid propagation of photons having a certain range of energies (known as a photonic bandgap), a property that could be incorporated in the design of novel optoelectronic devices2. Following the demonstration of a material with a full photonic bandgap at microwave frequencies3, there has been considerable progress in the fabrication of three-dimensional photonic crystals with operational wavelengths as short as 1.5 μm (ref. 4), although the optical properties of such structures are still far from ideal5. Here we show that, by restricting the geometry of the photonic crystal to two dimensions (in a waveguide configuration), structures with polarization-sensitive photonic band-gaps at still lower wavelengths (in the range 800–900 nm) can be readily fabricated. Our approach should permit the straightfor-ward integration of photonic-bandgap structures with other optical and optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yablonovitch, E. Phys. Rev. Lett 58, 2059–2062 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Gourley, P. L. Nature 371, 571–577 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Yablonovitch, E., Gmitter, T. J. & Leung, K. M. Phys. Rev. Lett. 67, 2295–2298 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Cheng, C. C. & Scherer, A. J. Vac. Sci. Technol. B 13, 2969–2700 (1995).

    Google Scholar 

  5. Cheng, C. C., Scherer, A., Arbet-Angels, V. & Yablonovitch, E. J. Vac. Sci. Technol. (in the press).

  6. Padjen, R., Gerard, J. M. & Marzin, J. Y. J. Mod. Opt. 41, 295–310 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals (Princeton Univ. Press, 1995).

    MATH  Google Scholar 

  8. Cassagne, D., Jouanin, C. & Bertho, D. Phys. Rev. B 52, R2217–R2220 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Krauss, T. F. & De La Rue, R. M. Appl. Phys. Lett. 68, 1613–1615 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Atkin, D. M., Russell, P. St J., Birks, T. A. & Roberts, P. J. J. Mod. Opt. 43, 1035–1053 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Villeneuve, P. R. et al. Appl. Phys. Lett. 67, 167–169 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Russell, P. St J. R. Phys. World 5, 37–42 (1992).

    Article  CAS  Google Scholar 

  13. Smith, D. R. & Schultz, S. J. Mod. Opt. 41, 395–404 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Krauss, T. F., Vögele, B., Stanley, C. R. & De La Rue, R. IEEE Photon. Technol. Lett. (submitted).

  15. MacDougal, M. H., Zhao, H., Dapkus, P. D., Ziari, M. & Steier, W. H. Electron. Lett. 30, 1147–1149 (1994).

    Article  CAS  Google Scholar 

  16. Robertson, W. M., Arjavalingam, G., Meade, R. D., Brommer, K. D. & Rappe, A. M. Phys. Rev. Lett. 68, 2023–2026 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Krauss, T., Song, Y. P., Thoms, S., Wilkinson, C. D. W. & De La Rue, R. M. Electron. Lett. 30, 1444–1446 (1994).

    Article  CAS  Google Scholar 

  18. Kittel, C. Introduction to Solid State Physics (Wiley, New York, 1986).

    MATH  Google Scholar 

  19. Planck, M. Ann. Phys. 4, 553, 564 (1901).

    Article  Google Scholar 

  20. Plihal, M. & Maradudin, A. A. Phys. Rev. B 44, 8565–8571 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauss, T., Rue, R. & Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996). https://doi.org/10.1038/383699a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383699a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing