Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the Src family tyrosine kinase Hck

Abstract

The crystal structure of the haematopoietic cell kinase Hck has been determined at 2.6/2.9 Å resolution. Inhibition of enzymatic activity is a consequence of intramolecular interactions of the enzyme's Src-homology domains SH2 and SH3, with concomitant displacement of elements of the catalytic domain. The conformation of the active site has similarities with that of inactive cyclin-dependent protein kinases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, M. T. & Cooper, J. A. Regulation, substrates and functions of Src. Biochim. Biophys. Acta 1287, 121–149 (1996).

    PubMed  Google Scholar 

  2. Quintrell, N. et al. Identification of a human gene (HCK) that encodes a protein-tyrosine kinase and is expressed in hemopoietic cells. Mol. Cell. Biol. 7, 2267–2275 (1987).

    Article  CAS  Google Scholar 

  3. Zeigler, S. F., March, J. D., Lewis, D. B. & Perlmutter, R. M. Novel protein-tyrosine kinase gene (hck) preferentially expressed in cells of hematopoietic origin. Mol. Cell. Biol. 7, 2276–2285 (1987).

    Article  Google Scholar 

  4. Lowell, C. A., Soriano, P. & Varmus, H. E. Functional overlap in the src gene family: interaction of hck and fgr impairs natural immunity. Genes Dev. 8, 387–398 (1994).

    Article  CAS  Google Scholar 

  5. Lowell, C. A., Niwa, M., Soriano, P. & Varmus, H. E. Deficiency of the Hck and Sre Tyrosine Kinases results in extreme levels of extramedullary hematopoiesis. Blood 87, 1780–1792 (1996).

    CAS  PubMed  Google Scholar 

  6. Pawson, R. Protein modules and signalling networks. Nature 373, 573–580 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Cohen, G. B., Ren, R. & Baltimore, D. Modular binding domains in signal transduction proteins. Cell 80, 237–248 (1995).

    Article  CAS  Google Scholar 

  8. Kuriyan, J. & Cowburn, D. Modular Peptide Binding Domains. Annu. Rev. Biophys. Biomol. Struct. (in the press).

  9. Cunningham, B. D., Threadgill, M. A., Groundwater, P. W., Dale, I. L. & Hickman, J. A. Synthesis and biological evaluation of a series of flavones designed as inhibitors of protein tyrosine kinases. Anti-cancer Drug Design 7, 365–384 (1992).

    CAS  PubMed  Google Scholar 

  10. Waksman, F. et al. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358, 646–653 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Musacchio, A., Noble, M., Pauptit, R., Wierenga, R. & Saraste, M. Crystal structure of a Src-homology 3 (SH3) domain. Nature 359, 851–855 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Knighton, D. R. et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 407–414 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Hubbard, S. R., Wei, L., Ellis, L. & Hendrickson, W. A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746–754 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Yamaguchi, H. & Hendrickson, W. A. Structural basis for activation of the human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384, 484–489 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Johnson, L. N., Noble, M. E. M. & Owen, D. J. Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158 (1996).

    Article  CAS  Google Scholar 

  16. Adzhubei, A. A. & Sternberg, M. J. E. Left-handed polyproline II helices commonly occur in globular proteins. J. Mol. Biol. 229, 472–493 (1993).

    Article  CAS  Google Scholar 

  17. Yu, H., Chen, J. K., Feng, S., Dalgarno, D. C., Brauer, A. W. & Schreiber, S. L. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933–945 (1994).

    Article  CAS  Google Scholar 

  18. Musacchio, A., Saraste, M. & Wilmanns, M. High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Nature Struct. Biol. 1, 546–551 (1994).

    Article  CAS  Google Scholar 

  19. Eck, M. J., Atwell, S. K., Shoelson, S. E. & Harrison, S. C. Crystal structure of the regulatory domains of the Src-family tyrosine kinase lck. Nature 368, 764–769 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Zheng, J. et al. 2.2 Å refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallogr. D49, 362–365 (1993).

    CAS  Google Scholar 

  21. DeBondt, H. L. et al. Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Waksman, G., Shoelson, S. E., Plant, N., Cowburn, D. & Kuriyan, J. Binding of a high affinity phosphotyrosyl peptide to the src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72, 779–790 (1993).

    Article  CAS  Google Scholar 

  23. Eck, M. J., Shoelson, S. E. & Harrison, S. C. Recognition of a high affinity phosphotyrosyl peptide by the Src homology 2 domain of p56lck. Nature 362, 87–91 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  Google Scholar 

  25. Ladbury, J. E. et al. Measurement of the binding tyrosyl phosphopeptides to SH2 domains: a reappraisal. Proc. Natl Acad. Sci. USA 92, 3199–3203 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Lim, W. A., Richards, D. M. & Fox, R. O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Lee, C. -H. et al. A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. EMBO J. 14, 5006–5015 (1995).

    Article  CAS  Google Scholar 

  28. Lee, C. -H., Saksela, K., Mirza, U. A., Chait, B. T. & Kuriyan, J. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 85, 931–942 (1996).

    Article  CAS  Google Scholar 

  29. Erpel, T. A., Superti-Furga, G. & Courtneidge, S. A. Mutational analysis of the Src SH3 domain: the same residues of the ligand binding surface are important for intra- and inter-molecular interactions. EMBO J. 14, 963–975 (1995).

    Article  CAS  Google Scholar 

  30. MacAuley, A. & Cooper, J. A. Structural differences between repressed and derepressed forms of p60c-src. Mol. Cell. Biol. 9, 2448–2656 (1989).

    Article  Google Scholar 

  31. Juffrey, P. D. et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 294–295 (1995).

    Article  Google Scholar 

  32. Courtneidge, S. A. Activation of the pp60c-src kinase by middle T antigen binding or by dephosphorylation. EMBO J. 4, 1471–1477 (1985).

    Article  CAS  Google Scholar 

  33. Kmiecik, T. E. & Shalloway, D. Activation and suppression of pp60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49, 65–73 (1987).

    Article  CAS  Google Scholar 

  34. Piwnica-Worms, H., Saunders, K. B., Roberts, T. M., Smith, A. E. & Cheng, S. H. Tyrosine phosphorylation regulates the biochemical and biological properties of pp60c-Src. Cell 49, 75–82 (1987).

    Article  CAS  Google Scholar 

  35. Cartwright, C. A., Eckhart, W., Simon, S. & Kaplan, P. L. Cell transformation by pp60c-Src mutated in the carboxy-terminal regulatory domain. Cell 49, 83–91 (1987).

    Article  CAS  Google Scholar 

  36. Cooper, J. A. & King, C. S. Dephosphorylation or antibody binding to the carboxy terminus stimulates pp60c-src. Mol. Cell. Biol. 6, 4467–4477 (1986).

    Article  CAS  Google Scholar 

  37. Parsons, T. J. & Weber, M. J. Genetics of src. structure and functal organization of a protein tyrosine kinase. Curr. Top. Microb. Immunol. 147, 80–127 (1989).

    Google Scholar 

  38. Moarefi, I. et al. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385, 650–653 (1997).

    Article  ADS  CAS  Google Scholar 

  39. Briggs, S. D., Bryant, S. S., Jove, R., Sanderson, S. D. & Smithgall, T. E. The Ras GTPase-activating protein (GAP) is an SH3 domain-binding protein and substrate for the Src-related tyrosine kinase, Hek. J. Biol. Chem. 270, 14718–14724 (1995).

    Article  CAS  Google Scholar 

  40. Alexandropoulos, K. & Baltimore, D. Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev. 10, 1341–1355 (1996).

    Article  CAS  Google Scholar 

  41. Furey, W. & Swaminathan, S. in American Crystallographic Association Meeting Abstracts 73 (1990).

    Google Scholar 

  42. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  43. Brünger, A. R. X-PLOR (Yale University, New Haven, CT, 1992).

    Google Scholar 

  44. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  45. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  46. Brünger, A. T. Crystallographic refinement by simulated annealing: application to a 2.8 Å resolution structure of aspartate aminotransferase. J. Mol. Biol. 203, 803–816 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997). https://doi.org/10.1038/385602a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385602a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing