Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of telomere length by the human telomeric protein TRF1

Abstract

Human telomeres, the nucleoprotein complexes at chromosome ends, consist of tandem arrays of TTAGGG repeats bound to specific proteins. In normal human cells, telomeres shorten with successive cell divisions1,2, probably due to the terminal sequence loss that accompanies DNA replication. In tumours and immortalized cells, this decline is halted through the activation of telomerase3–5, a reverse transcriptase that extends the telomeric TTAGGG-repeat arrays6–7. Telomere length is stable in several immortal human-cell lines3, suggesting that a regulatory mechanism exists for limiting telomere elongation by telomerase. Here we show that the human telomeric-repeat binding factor TRF1 (ref. 8) is involved in this regulation. Long-term overexpression of TRF1 in the telomerase-positive tumour-cell line HT1080 resulted in a gradual and progressive telomere shortening. Conversely, telomere elongation was induced by expression of a dominant-negative TRF1 mutant that inhibited binding of endogenous TRF1 to telomeres. Our results identify TRF1 as a suppressor of telomere elongation and indicate that TRF1 is involved in the negative feedback mechanism that stabilizes telomere length. As TRF1 does not detectably affect the expression of telomerase, we propose that the binding of TRF1 controls telomere length in cis by inhibiting the action of telomerase at the ends of individual telomeres.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cooke, H. J. & Smith, B. A. Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harbor Symp. Quant. Biol. L1, 213–219 (1986).

    Article  Google Scholar 

  2. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    Article  CAS  Google Scholar 

  4. Counter, C. M., Hirte, H. W., Bacchetti, S. & Harley, C. Telomerase activity in human ovarian carcinoma. Proc. Natl Acad. Sci. USA 91, 2900–2904 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Morin, G. B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521–529 (1989).

    Article  CAS  Google Scholar 

  7. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Kipling, D. & Cooke, H. J. Hypervariable ultra-long telomeres in mice. Nature 347, 347–402 (1990).

    Article  Google Scholar 

  10. Barnett, M. et al. Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Res. 21, 27–36 (1993).

    Article  CAS  Google Scholar 

  11. Hanish, J. P., Yanowitz, J. & de Lange, T. Stringent sequence requirements for telomere formation in human cells. Proc. Natl Acad. Sci. USA 91, 8861–8865 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Zhong, Z., Shiue, L., Kaplan, S. & de Lange, T. A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol. Cell. Biol. 13, 4834–4843 (1992).

    Article  Google Scholar 

  13. Ludérus, M. E. E. et al. Structure, subnuclear distribution, and nuclear matrix association of the mammalian telomeric complex. J. Cell. Biol. 135, 867–883 (1996).

    Article  Google Scholar 

  14. Broccoli, D. et al. Comparison of the human and mouse genes encoding the telomeric protein, TRF1: chromosomal localization, expression, and conserved protein domains. Hum. Mol. Genet. 6, 69–76 (1997).

    Article  CAS  Google Scholar 

  15. Smith, S. & de Lange, T. TRF1, a mammalian telomeric protein. Trends Genet. 13, 21–26 (1997).

    Article  CAS  Google Scholar 

  16. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracyclin-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Bianchi, A., Smith, S., Chong, L., Elias, P. & de Lange, T. TRF1 is a dimer and bends telomeric DNA. EMBO J. (in the press).

  18. Carson, M. J. & Hartwell, L. CDC17: An essential gene that prevents telomere elongation in yeast. Cell 42, 249–257 (1985).

    Article  CAS  Google Scholar 

  19. Lustig, A. J. & Petes, T. D. Identification of yeast mutants with altered telomere structure. Proc. Natl Acad. Sci. USA 83, 1398–1402 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Shampay, J. & Blackburn, E. H. Generation of telomere-length heterogeneity in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 85, 534–538 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Bryan, T. M. & Reddel, R. R. Telomere dynamics and telomerase activity in in vitro-immortalised human cells. Eur. J. Cancer (in the press).

  22. Broccoli, D., Young, J. W. & de Lange, T. Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl Acad. Sci. USA 92, 9082–9086 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Conrad, M. N., Wright, J. H., Wolf, A. J. & Zakian, V. A. RAP1 protein interacts with yeast telomeres in vivo: Overproduction alters telomere structure and decreases chromosome stability. Cell 63, 739–750 (1990).

    Article  CAS  Google Scholar 

  24. Lustig, A. J., Kurtz, S. & Shore, D. Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science 250, 549–553 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Krauskopf, A. & Blackburn, E. H. Control of telomere growth by interactions of RAP1 with the most distal telomeric repeats. Nature 383, 354–357 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Cooper, J., Nimmo, E., Allshire, R. & Cech, T. Nature (this issue).

  27. McEachern, M. J. & Blackburn, E. H. Runaway telomere elongation caused by telomerase RNA gene mutations. Nature 376, 403–409 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Marcand, S., Gilson, E. & Shore, D. A protein-counting mechanism for telomere length regulation in yeast. Science (in the press).

  29. Hastie, N. D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990).

    Article  ADS  CAS  Google Scholar 

  30. de Lange, T. et al. Structure and variability of human chromosome ends. Mol. Cell. Biol. 10, 518–527 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Steensel, B., de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997). https://doi.org/10.1038/385740a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385740a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing