Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Confined subsurface microbial communities in Cretaceous rock

Abstract

Deep subsurface microbial communities1 are believed to be supported by organic matter that was either deposited with the formation sediments or which migrated from the surface along groundwater flowpaths. Investigation has therefore focused on the existence of microorganisms in recently deposited or highly permeable sediments2,3. Fewer reports have focused on consolidated rocks4–7. These findings have often been limited by inadequate tracer methodology or non-sterile sampling techniques. Here we present evidence for the presence of spatially discrete microbial communities in Cretaceous rocks and advance a mechanism for the long-term survival of these subterranean communities. Samples were collected using aseptic methods and sensitive tracers8. Our results indicate that the main energy source for these communities is organic material trapped within shales. Microbial activity in shales appears to be greatly reduced, presumably because of their restrictive pore size9. However, organic material or its fermentation products could diffuse into adjacent, more permeable sandstones, where microbial activity was much more abundant. This process resulted in the presence of microbial communities at sandstone–shale interfaces. These microorganisms presumably ferment organic matter and carry out sulphate reduction and acetogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pederson, K. Earh-Sci. Rev. 34, 243–260 (1993).

    ADS  Google Scholar 

  2. Beeman, R. E. & Suflita, J. M. Microb. Ecol. 14, 39–54 (1987).

    Article  CAS  Google Scholar 

  3. Balkwill, D. L., Fredrickson, J. K. & Thomas, J. M. Appl. Environ. Microbiol. 55, 1058–1065 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Amy, P. S., Haldeman, D. H., Ringelberg, D. B., Hall, D. H. & Russell, C. Appl. Environ. Microbiol. 58, 3367–3373 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lipman, C. B. Science 68, 272–273 (1928).

    Article  ADS  CAS  Google Scholar 

  6. Turner, H. G. Science 76, 121–122 (1932).

    Article  ADS  CAS  Google Scholar 

  7. Farrell, M. A. & Turner, H. G. J. Bacteriol. 23, 155–162 (1932).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fredrickson, J. K. & Phelps, T. J. in Manual of Environmental Microbiology (eds Knudsen, G., Stetzenbach, L., Mclnerney, M. M. & Walter, M.) 526–540 (Am. Soc. Microbiol., Washington, 1996).

    Google Scholar 

  9. Fredrickson, J. K. et al. Geomicrobiol. J. (in the press).

  10. Kauffman, E. B. in Treatise on Invertibrate Paleontology A (eds Robinson, R. A. & Teichart, C.) 418–487 (Geol. Soc. Am., Boulder and Univ. of Kansas, Lawrence, 1979).

    Google Scholar 

  11. Pegram, P. thesis, New Mexico Inst. Mining and Technol. (1995).

  12. Chambers, L. A. & Trudinger, P. A. Geomicrobiol. J. 1, 249–293 (1979).

    Article  CAS  Google Scholar 

  13. Sharma, P. K. & Mclnerney, M. J. Appl. Environ. Microbiol. 60, 1481–1486 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. McMahon, P. B. & Chapelle, F. H. Nature 349, 233–235 (1991).

    Article  ADS  CAS  Google Scholar 

  15. McMahon, P. B., Chapelle, F. H., Falls, W. F. & Bradley, P. M. J. Sedim. Petrol. 62, 1–10 (1992).

    Google Scholar 

  16. Chapelle, F. H. & Lovley, D. R. Appl. Environ. Microbiol. 56, 1865–1874 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. McKinley, J. P. et al. Geomicrobiol. J. 14, 23–39 (1997).

    Article  CAS  Google Scholar 

  18. Fossing, H. & Jorgensen, B. B. Biogeochemistry 8, 205–222 (1989).

    Article  CAS  Google Scholar 

  19. Ulrich, G. A., Krumholz, L. R. & Suflita, J. M. Appl. Environ. Microbiol. 63 (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krumholz, L., McKinley, J., Ulrich, G. et al. Confined subsurface microbial communities in Cretaceous rock. Nature 386, 64–66 (1997). https://doi.org/10.1038/386064a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386064a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing