Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the adenylyl cyclase catalytic core

An Erratum to this article was published on 10 July 1997

Abstract

Mammalian adenylyl cyclases contain two conserved regions, C1 and C2, which are responsible for forskolin- and G-protein-stimulated catalysis. The structure of the C2 catalytic region of type II rat adenylyl cyclase has an α/β class fold in a wreath-like dimer, which has a central cleft. Two forskolin molecules bind in hydrophobic pockets at the ends of cleft. The central part of the cleft is lined by charged residues implicated in ATP binding. Forskolin appears to activate adenylyl cyclase by promoting the assembly of the active dimer and by direct interaction within the catalytic cleft. Other adenylyl cyclase regulators act at the dimer interface or on a flexible C-terminal region.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Robison, G. A., Butcher, R. W. & Sutherland, E. W. Cyclic AMP. Annu. Rev. Biochem. 37, 149–174 (1968).

    Article  CAS  Google Scholar 

  2. Rodbell, M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284, 17–22 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Iyengar, R. Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases. FASEB J. 7, 768–775 (1993).

    Article  CAS  Google Scholar 

  4. Taussig, R. & Gilman, A. G. Regulation of adenylyl cyclases. J. Biol. Chem. 270, 1–4 (1995).

    Article  CAS  Google Scholar 

  5. Sunahara, R. K., Dessauer, C. W. & Gilman, A. G. Complexity and diversity of mammalian adenylyl cyclase. Annu. Rev. Pharmacol. Toxicol. 36, 461–480 (1996).

    Article  CAS  Google Scholar 

  6. Tang, W.-J., Yan, S. & Drum, C. Class III adenylyl cyclases—regulation and underlying mechanisms. Adv. Sec. Mess. Phosphoprt. Res. (in the press).

  7. Cooper, D. M., Mons, N. & Karpen, J. W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374, 421–424 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Krupinski, J. et al. Adenylyl cyclase amino acid sequence: possible channel or transporter-like structure. Science 244, 1558–1564 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Tang, W.-J. & Gilman, A. G. Construction of a soluble adenylyl cyclase activated by Gsα and forskolin. Science 268, 1769–1772 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Dessauer, C. W. & Gilman, A. G. Purification and characterization of a soluble form of mammalian adenylyl cyclase. J. Biol. Chem. 271, 16967–16974 (1996).

    Article  CAS  Google Scholar 

  11. Whisnant, R. E., Gilman, A. G. & Dessauer, C. W. Interaction of the two cytoplasmic domains of mammlian adenylyl cyclase. Proc. Natl Acad. Sci. USA 93, 6621–6625 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Yan, S.-Z., Hahn, D., Huang, Z.-H. & Tang, W.-J. Two cytoplasmic domains of mammalian adenylyl cyclase form a Gsα- and forskolin-activated enzyme in vitro. J. Biol. Chem. 271, 10941–10945 (1996).

    Article  CAS  Google Scholar 

  13. Zhang, G. et al. Characterization and crystallization of a minimal catalytic core domain from mammalian type II adenylyl cyclase. Prot. Sci. (in the press).

  14. Feinstein, P. G. et al. Molecular cloning and characterization of a Ca2+/calmodulin insensitive adenylyl cyclase from rat brain. Proc. Natl Acad. Sci. USA 88, 10173–10177 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Murzin, A. G., Bressner, S. E., Hubbard, T. & Chothia, C. SCOP: A structural classification of proteins database for the investigaiton of sequences and structures. J. Mol. Biol. 242, 309–320 (1994).

    Google Scholar 

  16. Kleywegt, G. J. & Jones, T. A. A super position. ESF/CCP4 Newsletter 31, 9–14 (1994).

    Google Scholar 

  17. Lee, B. & Richards, F. M. The interpretation of protein structures:estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  18. Tang, W.-J., Stanzel, M. & Gilman, A. G. Truncation and alanine scanning mutants of type I adenylyl cyclase. Biochemistry 34, 14563–14572 (1995).

    Article  CAS  Google Scholar 

  19. Yan, S.-Z., Huang, Z.-H., Shaw, R. S. & Tang, W. J. The conserved asparagine and arginine are essential for catalysis of mammalian adenylyl cyclase. J. Biol. Chem. (in the press).

  20. Desaubry, L., Shoshani, I. & Johnson, R. A. 2′,5′-dideoxyadenosine 3′-polyphosphates are potent inhibitors of adenylyl cyclases. J. Biol. Chem. 271, 14028–14034 (1996).

    Article  CAS  Google Scholar 

  21. Droste, M., Mollner, S. & Pfeuffer, T. Localisation of an ATP-binding site on adenylyl cyclase type I after chemical and enzymatic fragmentation. FEBS Lett. 391, 209–214 (1996).

    Article  CAS  Google Scholar 

  22. Miller, M., Jaskolski, M., Mohana, R., Leis, J. & Wlodawer, A. Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature 337, 576–579 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Seamon, K. B., Padgett, W. & Daly, J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. Natl Acad. Sci. USA 78, 3363–3367 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Laurenza, A., Sutkowski, E. M. & Seamon, K. B. Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol. Sci. 10, 442–447 (1989).

    Article  CAS  Google Scholar 

  25. Sutkowski, E. M., Robbins, J. D., Tang, W.-J. & Seamon, K. B. Irreversible inhibition of forskolin interactions with type I adenylyl cyclase with type I adenylyl cyclase by a 6-isothiocyanate derivative of forskolin. Mol. Pharmacol. 50, 299–305 (1996).

    CAS  PubMed  Google Scholar 

  26. Robbins, J. D., Boring, D. L., Tang, W.-J., Shank, R. & Seamon, K. B. Forskolin carbamates: binding and activation studies with type I adenylyl cyclase. J. Med. Chem. 39, 2745–2752 (1996).

    Article  CAS  Google Scholar 

  27. Morris, D. I., Robbins, J. D., Ruoho, A. E., Sutkowski, E. M. & Seamon, K. B. Forskolin photoaffinity labels with specifcity for adenylyl cyclase and the glucose transporter. J. Biol. Chem. 266, 13377–13384 (1991).

    CAS  PubMed  Google Scholar 

  28. Sharp, K., Nicholls, A., Fine, R. F. & Honig, B. Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252, 106–109 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Eriksson, A. E., Baase, W. A., Wozniak, J. A. & Matthews, B. W. A cavity-cntaining mutant of T4 lysozyme is stabilized by buried benzene. Nature 355, 371–373 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Gonzalez, L., Plecs, J. J. & Alber, T. An engineered allosteric switch in leucine-zipper oligomerization. Nature Struct. Biol. 3, 510–515 (1996).

    Article  CAS  Google Scholar 

  31. Chen, J.-Q. et al. A region of adenylyl cyclase 2 critical for regulation of G protein βγ subunits. Science 268, 1166–1169 (1995).

    Article  ADS  CAS  Google Scholar 

  32. Weng, G. et al. Gβ subunit interacts with a peptide encoding region 956–982 of adenylyl cyclase 2. J. Biol. Chem. 271, 26445–26448 (1996).

    Article  CAS  Google Scholar 

  33. Levin, L. R. & Reed, R. R. Identification of functional domains of adenylyl cyclase using in vivo chimeras. J. Biol Chem. 270, 7573–7579 (1995).

    Article  CAS  Google Scholar 

  34. Vorherr, T. et al. The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase. Biochemistry 32, 6081–6088 (1993).

    Article  CAS  Google Scholar 

  35. Wu, Z., Wong, S. T. & Storm, D. R. Modification of the calcium and calmodulin sensitivity of the type I adenylyl cyclase by mutagenesis of its calmodulin binding domain. J. Biol. Chem. 268, 23766–23768 (1993).

    CAS  PubMed  Google Scholar 

  36. Parent, C. A. & Devreotes, P. N. Isolation of inactive and G protein-resistant adenylyl cyclase mutants using random mutagenesis. J. Biol Chem. 270, 22693–22696 (1995).

    Article  CAS  Google Scholar 

  37. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. (in the press).

  38. Terwilliger, T. C., Kim, S. H. & Eisenberg, D. E. Generalized method of determining heavy atom positions from the difference Patterson function. Acta Crystallogr. A 43, 34–38 (1987).

    Article  Google Scholar 

  39. Furey, W. & Swaminathan, S. PHASES-95: A program package for the processing and analysis of diffraction data from macromolecules. Methods Enzymol. (in the press).

  40. Cowtan, K. Dm—density modificaiton package. ESF/CCP4 Newsletter 31, 34–38 (1994).

    Google Scholar 

  41. Collaborative Computational Project, Number 4. The CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. D 50, 670–673 (1994).

  42. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjelgard, M. W. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  43. Brunger, A. T. X-PLOR Version 3.8 (Dept of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 1996).

    Google Scholar 

  44. Engh, R. & Huber, R. Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Crystallogr. A 47, 392–400 (1991).

    Article  Google Scholar 

  45. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK–a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  46. Arnez, J. G. MINIMAGE: A program for plotting electron density maps. J. Appl Crystallogr. 27, 649–653 (1994).

    Article  CAS  Google Scholar 

  47. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  48. Merritt, E. A. & Anderson, W. F. Raster3D Version 2.0—a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 219–220 (1994).

    Article  Google Scholar 

  49. Nicholls, A. GRASP Manual (Columbia University, New York, 1992).

    Google Scholar 

  50. Carson, M. Ribbon models of macromolecules. J. Mol. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Liu, Y., Ruoho, A. et al. Structure of the adenylyl cyclase catalytic core. Nature 386, 247–253 (1997). https://doi.org/10.1038/386247a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386247a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing