Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional activation by recruitment

Abstract

The recruitment model for gene activation stipulates that an activator works by bringing the transcriptional machinery to the DNA. Recent experiments in bacteria and yeast indicate that many genes can be activated by this mechanism. These findings have implications for our understanding of the nature of activating regions and their targets, and for the role of histones in gene regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ptashne, M. How eukaryotic transcriptional activators work. Nature 335, 683–689 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ptashne, M. A Genetic Switch: Phage Lambda and Higher Organisms (Cell and Blackwell Scientific, Cambridge, MA, 1992).

    Google Scholar 

  3. Guarente, L. et al. Mutant lambda phage represser with a specific defect in its positive control fucntion. Proc. Natl Acad. Sci. USA 79, 2236–2239 (1982).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hochschild, A., Irwin, N. & Ptashne, M. Represser structure and the mechanism of positive control. Cell 32, 319–325 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Bushman, F. D., Shang, C. & Ptashne, M. One glutamic acid residue plays a key role in the activation function of lambda represser. Cell 58, 1163–1171 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Kuldell, N. & Hochschild, N. Amino acid substitutions in the -35 recognition motif of sigma 70 that result in defects in phage lambda repressor-stimulated transcription. J. Bact. 176, 2991–2998 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, M., Moyle, H. & Susskind, M. M. Target of the transcriptional activating function of phage lambda cl protein. Science 263, 75–77 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Busby, S. & Ebright, R. H. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell 79, 743–746 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Busby, S. & Ebright, R. H. Transcription activation at class II CAP-dependent promoters. Mol. Microbiol. (in the press).

  10. Niu, W. et al. Transcription activation at class II CAP-dependent promoters: two interactions between and RNA polymerase. Cell 87, 1123–1134 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bell, A. et al. Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription. Nucleic Acids. Res. 18, 7242–7250 (1990).

    Google Scholar 

  12. Zhou, Y., Zhang, X. & Ebright, R. H. Identification of the activating region of CAP: isolation and characterization of mutants of CAP specifically defective in transcription activation. Proc. Natl Acad. Sci. USA 90, 6081–6085 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang, H. et al. Location, structure and function of the target of a transcription activator protein. Genes Dev. 8, 3058–3067 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, Q. et al. Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev. 6, 1964–1974 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Igarashi, K. & Ishihama, A. bipartite functional map fo the E. coli RNA polymerase alpha subunit. Cell 65, 1015–1022 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, Y., Ebright, Y. W. & Ebright, R. H. Identification of the target of a transcription activator protein by protein-protein photocrosslinking. Science 265, 90–92 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ishihama, A. Protein-protein communication within the transcription apparatus. J. Bact. 175, 2483–2489 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ross, W. et al. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 262, 1407–1413 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Blatter, E. et al. Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell 78, 889–896 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, A. et al. Role of the sigma 70 subunit of Escherichia coli RNA polymerase in transcription activation. J. Mol. Biol. 235, 405–413 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Dove, S. L., Joung, J. K. & Hochschild, A. Activation of prokaryotic transcription through arbitrary protein-protein contacts. Nature 386, 627–630 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Joung, J. K., Koepp, D. M. & Hochschild, A. Synergistic activation of transcription by bacteriophage 1 cI protein and E. coli cAMP receptor protein. Science 265, 1863–1866 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Busby, S. et al. Transcription activation by the Escherichia coli cyclic AMP receptor protein—receptors bound in tandem at promoters can interact synergistically. J. Mol. Biol. 241, 341–352 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Scott, S., Busby, S. & Beacham, I. Transcriptional coactivation at the ANSB promoters—involvement of the activating regions of CPR and FNR when bound in tandem. Mol. Microb. Biol. 18, 521–531 (1995).

    CAS  Google Scholar 

  25. Kustu, S. et al. Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol. Rev. 53, 367–376 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Magasanik, B. The regulation of nitrogen utilization in enteric bacteria. J. Cell. Biochem. 51, 34–40 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Popham, D. L. et al. Function of a bacterial activator protein that binds to transcriptional enhancers. Science 243, 629–635 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Austin, S. & Dixon, R. The prokaryotic enhancer binding protein NTRC has an aTPase activity which is phosphorylation and DNA dependent. EMBO J. 11, 2219–2228 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wedel, A. & Kustu, S. The bacterial enhancer bindign protein NTRC is a molecular machine: ATP hydrolysis is coupled to transcriptional activation. Genes Dev. 9, 2042–2052 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Miller, A. et al. RNA polymerase beta' subunit: target for DNA-binding-independent transcriptional activation. Science 275, 1655–1657 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Buck, M. & Cannon, W. Mutation in the RNA polymerase recognition sequence of the Klebsiella pneumoniae nifH promoter permitting transcriptional activation in the absence of NifA binding to upstream activating sequences. Nucleic Acids Res. 17, 2597–2612 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. North, A. & Kustu, S. Mutant forms of the enhancer-binding protein NtrC can activate transcription from solution. J. Mol. Biol. (in the press).

  33. Struhl, K. Molecular mechanisms of transcriptional regulation in yeast. Annu. Rev. Biochem. 58, 1051–1077 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Struhl, K. Chromatin structure and RNA polymerase II connection: implications for transcription. Cell 84, 179–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Koleske, A. J. & Young, R. A. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem. Sci. 20, 113–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Carey, M. A holistic view of the complex. Curr. Biol. 5, 1003–1005 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Zawel, L. & Reinberg, D. Common themes in assembly and function of eukaryotic transcription complexes. Annu. Rev. Biochem. 64, 522–561 (1995).

    Article  Google Scholar 

  38. Koleske, A. & Young, R. A. An RNA polymerase II holoenzyme responsive to activators. Nature 368, 466–469 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Kim, T. K. et al. Effects of activation-defective TBP mutaitons on transcription initiation in yeast. Nature 369, 252–255 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Nikolov, D. B. et al. Crystal structure of a TFIIB-TBP-TATA element ternary complex. Nature 377, 119–128 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Ma, J. & Ptashne, M. Deletion analysis of GALL4 defines two transcriptional activating segments. Cell 48, 847–853 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Hope, I. A., Mahadevan, S. & Struhl, K. Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein. Nature 333, 635–640 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Barberis, A. et al. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81, 359–368 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Farell, S. et al. Gene activation by recruitment of the RNA polymerase II holoenzyme. Genes Dev. 10, 2359–2367 (1996).

    Article  Google Scholar 

  45. Apone, L. et al. Yeast TAP (II)90 is required for cell-cycle progression through G(2)/M but not for general transcription activation. Genes Dev. 10, 2368–2380 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Chatterjee, S. & Struhl, K. Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature 374, 820–822 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Klages, N. & Strubin, M. Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo. Nature 374, 822–823 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Xiao, H., Friesen, J. D. & Lis, J. T. Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol. Cell. Biol. 15, 5757–5761 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koleske, A. J. et al. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 69, 883–894 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Gill, G. & Ptashne, M. Negative effect of the transcriptional activator GAL4. Nature 334, 721–724 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Almer, A. et al. Removal of positioned nucleosomes form the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5, 2689–2696 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Giardina, C. & Lis, J. T. Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol. Cell. Biol. 15, 2737–2744 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Treizenberg, S. J. Structure and function of transcriptional activation domains. Curr. Opin. Gen. Dev. 5, 190–196 (1995).

    Article  Google Scholar 

  54. Hope, I. A. & Struhl, K. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46, 885–894 (1986).

    Article  CAS  PubMed  Google Scholar 

  55. Ogawa, N. & Oshima, Y. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 2224–2236 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, Y., Reece, R. J. & Ptashne, M. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 15, 3951–3963 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harrison, S. C. Peptide-surface association: the case of PDZ and PTB domains. Cell 86, 341–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Ma, J. & Ptashne, M. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50, 137–142 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Leuther, K. K., Salmeron, J. M. & Johnson, S. A. Genetic evidence that an activation domain of GAL4 does not require acidity and may form a β sheet. Cell 72, 575–585 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Stringer, K. F., Ingles, C. J. & Greenblatt, J. Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature 345, 783–786 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Nerlov, C. & Ziff, E. B. CCAAT/enhancer binding protein amino acid motifs with dual TBP and TFIIB binding ability co-operate to activate transcription in both yeast and mammalian cells. EMBO J. 14, 4318–4328 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pugh, B. F. & Tijan, R. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61, 1187–1197 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Reese, J. C. et al. Yeast TAFIIs in a multisubunit complex required for activated transcription. Nature 371, 523–527 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Burley, S. K. & Roeder R. G. Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65, 769–799 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Walker, S. S. et al. Transcription activation in cells lacking TAFIIS. Nature 383, 185–188 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Moqtaderi, Z. et al. TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383, 188–191 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Verrijzer, C. et al. Binding of TAFs to core elements directs promoter selectivity by RNA polymerase II. Cell 81, 1115–1125 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Sauer, F., Hansen, S. & Tijan, R. Multiple TAFIIs directing synergistic activation of transcription. Science 270, 1783–1788 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Hengartner, C. J. et al. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev. 9, 897–910 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Xiao, H. et al. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14, 7013–7024 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tanaka, M. Modulation of promoter occupancy by cooperative DNA/binding and activation-domain function is a major determinant of transcriptional regulation by activators in vivo. Proc. Natl Acad. Sci. USA 94, 4311–4315 (1996).

    Article  ADS  Google Scholar 

  72. Felsenfeld, G. et al. Chromatin structure and gene expression. Proc. Natl Acad. Sci. USA 93, 9384–9388 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gaudreau, L. et al. RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PHO5 promoter. Cell (in the press).

  74. Marsolier, M. et al. Reciprocal interferences between nucleosomal organization and transcriptional activity of the yeast SNR6 gene. Genes Dev. 9, 410–422 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Han, M. & Grunstein, M. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55, 1137–1145 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Polach, K. J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Polach, K. J. & Widom, J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Peterson, C. L. & Tamkun, J. W. The Swi-Snf complex: a chromatin remodeling machine? Trends Biochem. Sci. 20, 143–146 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Brownell, J. E. & Allis, C. D. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev. 6, 176–184 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Cairns, B. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249–1260 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Wilson, C. J. et al. RNA polymerase II holeoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84, 235–244 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Laurent, B. C., Treitel, M. A. & Carlson, M. Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proc. Natl Acad. Sci. USA 88, 2687–2691 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. DeRobertis, F. et al. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384, 589–591 (1996).

    Article  ADS  Google Scholar 

  84. Greenblatt, J., Nodwell, J. & Mason, S. Transcriptional antitermination. Nature 364, 401–406 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Benjtley, D. Regulation of transcriptional elongation by RNA polymerase II. Curr. Opin. Genet. Dev. 5, 210–216 (1995).

    Article  Google Scholar 

  86. Rasmussen, E. B. & Lis, J. T. Short transcripts of the ternary complex provide insight into RNA polymerase II elongation pausing. J. Mol. Biol. 252, 522–535 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Blau, J. et al. Three functional classes of transcriptional activation domains. Mol. Cell Biol. 16, 244–255 (1996).

    Article  Google Scholar 

  88. McClure, W. R. Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem. 54, 171–204 (1985).

    Article  CAS  PubMed  Google Scholar 

  89. Ninfa, A. J., Reitzer, L. J. & Magasanik, B. Initiation of transcription at the bacterial glnAP2 promoter by purified E. coli components is facilitated by enhancers. Cell 50, 1039–1046 (1987).

    Article  CAS  PubMed  Google Scholar 

  90. Sasse-Dwight, S. & Gralla, J. D. Probing the Escherichia coli glnALG upstream activation mechanism in vivo. Proc. Natl Acad. Sci. USA 85, 8934–8938 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Straney, D., Straney, S. & Crothers, D. Synergy between Escherichia coli CAP protein and RNA polymerase in the lac promoter open complex. J. Mol. Biol. 206, 41–57 (1989).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, L. & Gralla, J. D. Micrococcal nuclease as a probe for bound and distorted DNA in lac transcription and repression complexes. Nucleic Acids Res. 17, 5017–5028 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sasse-Dwight, S. & Gralla, J. D. KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J. Biol. Chem. 262, 8074–8081 (1989).

    Google Scholar 

  94. Malan, T. P., Buc, H. & McClure, W. R. Mechanism of CRP-cAMP activation of the lac operon transcription initiation activation of P1 promoter. J. Mol. Biol. 157, 493–525 (1982).

    Article  Google Scholar 

  95. Hawley, D. K. & McClure, W. R. Mechanism of activation of transcription initiation from the lambda-PRM promoter. J. Mol. Biol. 157, 493–525 (1982).

    Article  CAS  PubMed  Google Scholar 

  96. Meyer, B. J. & Ptashne, M. Gene regulation at the right operator (OR) of bacteriophage lambda III: lambda represser directly activates gene transcription. J. Mol. Biol. 139, 195–205 (1980).

    Article  CAS  PubMed  Google Scholar 

  97. Li, M., McClure, W. & Susskind, M. Changing the mechanism of transcriptional activation by phage lambda represser. Proc. Natl Acad. Sci. USA (in the press).

  98. Smith, T. & Sauer, R. Dual recognition of open-complex formation and promoter clearance by Arc explains a novel represser to activator switch. Proc. Natl Acad. Sci. USA 93, 8868–8872 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Monsalve, M. et al. Activation and repression of transcription at two different phage E29 promoters are mediated by interaction of the same residues of regulatory protein p4 with RNA polymerase. EMBO J. 15, 383–391 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Choy, H. et al. Repression and activation of transcription by Gal and Lac repressers: involvement of alpha subunit of RNA polymerase. EMBO J. 14, 4523–4529 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Couto, G., Klages, N. & Strubin, M. Synergistic and promoter-selective activation of transcription by recruitment of TFIID and TFIIB. Proc. Natl Acad. Sci. USA (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ptashne, M., Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997). https://doi.org/10.1038/386569a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/386569a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing