Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface

Abstract

Recognition by integrin proteins on the cell surface regulates the adhesive interactions between cells and their surroundings1,2. The structure of the 'I' domain that is found in some but not all integrins, has been determined3,4. However, the only integrin ligands for which structures are known, namely fibronectin and VCAM-1 (refs 5–7), are recognized by integrins that lack I domains. The intercellular adhesion molecules ICAM-1, 2 and 3 are, like VCAM-1, members of the immunoglobulin superfamily (IgSF), but they are recognized by an I domain-containing integrin, lymphocyte-function-associated antigen 1 (LFA-1, or CD 11 a/CD 18). Here we present the crystal structure of the extracellular region of ICAM-2. The glutamic acid residue at position 37 is critical for LFA-1 binding and is proposed to coordinate the Mg2+ ion in the I domain; this Glu 37 is surrounded by a relatively flat recognition surface and lies in a β-strand, whereas the critical aspartic acid residue in VCAM-1 and fibronectin lie in protruding loops. This finding suggests that there are differences in the architecture of recognition sites between integrins that contain or lack I domains. A bend between domains 1 and 2 of ICAM-2 and a tripod-like arrangement of N-linked glycans in the membrane-proximal region of domain 2 may be important for presenting the recognition surface to LFA-1. A model of ICAM-1 based on the ICAM-2 structure provides a framework for understanding its recognition by pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hynes, R. O. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  Google Scholar 

  2. Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multi-step paradigm. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  3. Lee, J.-O., Rieu, P., Arnaout, M. A. & Liddington, R. Crystal structure of the A domain from the α-subunit of integrin CR3 (CD11b/CD18). Cell 80, 631–638 (1995).

    Article  CAS  Google Scholar 

  4. Qu, A. & Leahy, D. J. Crystal structure of the I-domain from the GD11a/CD18 (LFA-1, a1b2) integrin. Proc. Natl Acad. Sci. USA 92, 10277–10281 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Leahy, D. J., Aukhil, I. & Erickson, H. P. 2.0 Å crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155–164 (1996).

    Article  CAS  Google Scholar 

  6. Jones, E. Y. et al. Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 Å resolution. Nature 373, 539–544 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Wang, J.-h. et al. The crystal structure of an N-terminal two domain fragment of VCAM-1: A cyclic peptide based on the domain 1 C-D loop can inhibit VCAM-l/α4 integrin. Proc. Natl Acad. Sci. USA 92, 5714–5718 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Stanley, P. Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycopoteins with minimal carbohydrate heterogeneity. Mol. Cell. Biol. 9, 377–383 (1989).

    Article  CAS  Google Scholar 

  9. Staunton, D. E., Dustin, M. L., Erickson, H. P. & Springer, T. A. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 61, 243–254 (1990).

    Article  CAS  Google Scholar 

  10. Holness, C. L. et al. Analysis of the binding site on intercellular adhesion molecule 3 for the leukocyte integrin lymphocyte function-associated antigen 1. J. Biol. Chem. 270, 877–884 (1995).

    Article  CAS  Google Scholar 

  11. Klickstein, L. B., York, M. B., de Fougerolles, A. R. & Springer, T. A. Localization of the binding site on intercellular adhesion molecule-3 (ICAM-3) for lymphocyte function-associated antigen-1 (LFA-1). J. Biol. Chem. 271, 23920–23927 (1996).

    Article  CAS  Google Scholar 

  12. Sadhu, C. et al. LFA-1 binding site in ICAM-3 contains a conserved motif and non-contiguous amino acids. Cell Adhes Commun. 2, 429–440 (1994).

    Article  CAS  Google Scholar 

  13. Harpaz, Y. & Chothia, C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. Mol. Biol. 238, 528–539 (1994).

    Article  CAS  Google Scholar 

  14. Williams, A. F. A year in the life of the immunoglobulin superfamily. Immunol. Today 8, 298–303 (1987).

    Article  CAS  Google Scholar 

  15. Wang, J.-h. et al. Structure of a functional fragment of VCAM-1 refined at 1.9 Å resolution. Acta Crystallogr. 52, 369–379 (1996).

    CAS  Google Scholar 

  16. Bodian, D. L., Jones, E. Y., Harlos, K., Stuart, D. I. & Davis, S. J. Crystal structure of the extracellular region of the human cell adhesion molecule CD2 at 2.5 Å resolution. Structure 2, 755–766 (1995).

    Article  Google Scholar 

  17. Musafia, B., Buchner, V. & Arad, D. Complex salt bridges in proteins: Statistical analysis of structure and function. J. Mol. Biol. 254, 761–770 (1995).

    Article  CAS  Google Scholar 

  18. Huang, C. & Springer, T. A. A binding interface on the I domain of lymphocyte function associated antigen-1 (LFA-1) required for specific interaction with intercellular adhesion molecule 1 (ICAM-1). j. Biol. Chem. 270, 19008–19016 (1995).

    Article  CAS  Google Scholar 

  19. Springer, T. A. Folding of the N-terminal, ligand-binding region of integrin α-subunits into a β-propeller domain. Proc. Natl Acad. Sci. USA 94, 65–72 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Greve, J. M. et al. The major human rhinovirus receptor is ICAM-1. Cell 56, 839–847 (1989).

    Article  CAS  Google Scholar 

  21. Staunton, D. E. et al. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56, 849–853 (1989).

    Article  CAS  Google Scholar 

  22. Berendt, A. R., Simmons, D. L., Tansey, J., Newbold, C. I. & Marsh, K. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 341, 57–59 (1989).

    Article  ADS  CAS  Google Scholar 

  23. McClelland, A. et al. Identification of monoclonal antibody epitopes and critical residues for rhinovirus binding in domain 1 of intercellular adhesion molecule 1. Proc. Natl Acad. Sci. USA 88, 7993–7997 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Register, R. B., Uncapher, C. R., Naylor, A. M., Lineberger, D. W. & Colonno, R. J. Human-murine chimeras of ICAM-1 identify amino acid residues critical for rhinovirus and antibody binding. J. Virol. 65, 6589–6596 1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ockenhouse, C. F., Betageri, R., Springer, T. A. & Staunton, D. E. Plasmodium falciparum-infected erythrocytes bind ICAM-1 at a site distinct from LFA-1, Mac-1, and human rhinovirus. Cell 68, 63–69 (1992).

    Article  CAS  Google Scholar 

  26. Berendt, A. R. et al. The binding site on ICAM-1 for plasmodium falciparum-infected erythorcytes overlaps, but is distinct from, the LFA-1-binding site. Cell 68, 71–81 (1992).

    Article  CAS  Google Scholar 

  27. Staunton, D. E., Dustin, M. L. & Springer, T. A. Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339, 61–64 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Casasnovas, J. M. & Springer, T. A. Kinetics and thermodynamics of virus binding to receptor: Studies with rhinovirus, intercellular adhesion molecule-1 (ICAM-1), and surface plasmon resonance. J. Biol. Chem. 270, 13216–13224 (1995).

    Article  CAS  Google Scholar 

  29. Carson, M. Ribbon models of macromolecules. J. Mol. Graph. 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  30. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association; insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  31. Sali, A. Thesis, Univ. London, 1991.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casasnovas, J., Springer, T., Liu, Jh. et al. Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature 387, 312–315 (1997). https://doi.org/10.1038/387312a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387312a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing