Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic

Abstract

Strains of Escherichia coli persist within the human gut as normal commensals, but are frequent pathogens and can cause recurrent infection1,2,3. Here we show that, in contrast to E. coli subjected to opsonic interactions stimulated by the host's immune response, E.coli that bind to the macrophage surface exclusively through thebacterial lectin FimH can survive inside the cell following phagocytosis. This viability is largely due to the attenuation of intracellular free-radical release and of phagosome acidification during FimH-mediated internalization, both of which are triggered by antibody-mediated internalization. This different processing of non-opsonized bacteria is supported by morphological evidence of tight-fitting phagosomes compared with looser, antibody-mediated phagosomes. We propose that non-opsonized FimH-expressing E. coli co-opt internalization of lipid-rich microdomains following binding to the FimH receptor, the glycosylphosphatidylinositol-linked protein CD48, because (1) the sterol-binding agents filipin, nystatin and methyl β-cyclodextrin specifically block FimH-mediated internalization; (2) CD48 and the protein caveolin both accumulate on macrophage membranes surrounding bacteria; and (3) antibodies against CD48 inhibit FimH-mediated internalization. Our findings bring the traditionally extracellular E. coli into the realm of opportunistic intracellular parasitism and suggest how opportunistic infections with FimH-expressing enterobacteria could occur in a setting deprived of opsonizing antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular survival of FimH-internalized E. coli in macrophages compared to opsonized E. coli.
Figure 2: Attenuation of both oxidative and non-oxidative bactericidal mechanisms following FimH-mediated phagocytosis.
Figure 3: FimH-internalized E. coli are harboured in morphologically distinct compartments from opsonized E. coli.
Figure 4: Use of CD48 and lipid trafficking pathways by FimH-internalized bacteria.

Similar content being viewed by others

References

  1. Brauner, A., Kaijser, B. & Kuhn, I. Recurrent Escherichia coli bacteraemia — clinical characteristics and bacterial properties. J. Infect. 28, 49–57 (1994).

    Article  CAS  Google Scholar 

  2. Seneca, H. Urinary-tract infections: etiology, microbiology, pathophysiology, diagnosis and management. J. Am. Geriat. Sco. 29, 359–369 (1981).

    Article  CAS  Google Scholar 

  3. Kreger, B. E., Craven, D. E., Carling, P. C. & McCabe, W. R. Gram-negative bacteremia. III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am. J. Med. 68, 332–343 (1980).

    Article  CAS  Google Scholar 

  4. Malaviya, R., Ikeda, T., Ross, E. & Abraham, S. N. Mast-cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381, 77–80 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Tewari, R. et al. Neutrophil activation by nascent FimH subunits of type 1 fimbriae purified from the periplasm of Escherichia coli. J. Biol. Chem. 268, 3009–3015 (1993).

    CAS  PubMed  Google Scholar 

  6. Goetz, M. B. & Silverblatt, F. J. Phagolysosome formation by polymorphonuclear leukocytes after ingestion of Escherichia coli that express type 1 pili. J. Infect. Dis. 156, 229–233 (1987).

    Article  CAS  Google Scholar 

  7. Keith, B. R., Harris, S. L., Russell, P. W. & Orndorff, P. E. Effect of type 1 piliation on in vitro killing of Escherichia coli by mouse peritoneal macrophages. Infect. Immun. 58, 3448–3454 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gbarah, A. et al. Shigella flexneri transformants expressing type 1 (mannose-specific) fimbriae bind to, activate, and are killed by phagocytic cells. Infect. Immun. 61, 1687–1693 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lock, R. et al. Neutrophil killing of two type 1 fimbriae-bearing Escherichia coli strains: dependence on respiratory burst activation. Infect. Immun. 58, 37–42 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ofek, I., Goldhar, J., Keisari, Y. & Sharon, N. Nonopsonic phagocytosis of microorganisms. Annu. Rev. Microbiol. 49, 239–276 (1995).

    Article  CAS  Google Scholar 

  11. May, A. K., Bloch, C. A., Sawyer, R. G., Spengler, M. D. & Pruett, T. L. Enhanced virulence of Escherichia coli bearing a site-targeted mutation in the major structural subunit of type 1 fimbriae. Infect. Immun. 61, 1667–1673 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kisielius, P. V., Schwan, W. R., Amundsen, S. K., Duncan, J. L. & Schaeffer, A. J. In vivo expression and variation of Escherichia coli type 1 and P pili in the urine of adults with acute urinary tract infections. Infect. Immun. 57, 1656–1662 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hagber, L. et al. Adhesion, hemagglutination, and virulence of Escherichia coli causing urinary tract infections. Infect. Immun. 31, 564–570 (1981).

    Google Scholar 

  14. Saukkonen, K., Cabellos, C., Burroughs, M., Prasad, S. & Tuomanen, E. Integrin-mediated localization of Bordetalla pertussis within macrophages: role in pulmonary colonization. J. Exp. Med. 173, 1143–1149 (1991).

    Article  CAS  Google Scholar 

  15. Sturgill-Koszycki, S. et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263, 637–639 (1994).

    Article  ADS  Google Scholar 

  16. Eissenberg, L. G., Goldman, W. E. & Schlesinger, P. H. Histoplasma capsulatum modulates the acidification of phagolysosomes. J. Exp. Med. 177, 1605–1611 (1993).

    Article  CAS  Google Scholar 

  17. Gbarah, A., Gahmberg, C. G., Ofek, I., Jacobi, U. & Sharon, N. Identification of the leukocyte adhesion molecules CD11 and CD18 as receptors for type 1-fimbriated (mannose-specific) Escherichia coli. Infect. Immun. 59, 4524–4530 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sauter, S. L., Rutherfurd, S. M., Wagener, C., Shively, J. E. & Hefta, S. A. Identificaiton of the specific oligosaccharide sites recognized by type 1 fimbriae from Escherichia coli on nonspecific cross-reacting antigen, a D66 cluster granulocyte glycoprotein. J. Biol. Chem. 268, 15510–15516 (1993).

    CAS  PubMed  Google Scholar 

  19. Wong, Y. W., Williams, A. F., Kingsmore, S. F. & Seldin, M. F. Structure, expression, and genetic linkage of the mouse BCM1 (OX45 or Blast-1) antigen. Evidence for genetic duplication giving rise to the BCM1 region on mouse chromosome 1 and the CD2/LFA3 region on mouse chromosome 3. J. Exp. Med. 171, 2115–2130 (1990).

    Article  CAS  Google Scholar 

  20. Davis, S. J. & van der Merwe, P. A. Structure and ligand interactions of CD2: implications for T-cell function. Immunol. Today 17, 177–187 (1996).

    Article  CAS  Google Scholar 

  21. Parton, R. G. Caveolae and caveolins. Curr. Opin. Cell Biol. 8, 542–548 (1996).

    Article  CAS  Google Scholar 

  22. Schnitzer, J. E., Oh, P., Pinney, E. & Allard, J. Filipin-sensitive caveolae-mediated transport in indothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127, 1217–1232 (1994).

    Article  CAS  Google Scholar 

  23. Yancey, P. G. et al. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. J. Biol. Chem. 271, 16026–16034 (1996).

    Article  CAS  Google Scholar 

  24. Keller, G. A., Siegel, M. W. & Caras, J. W. Endocytosis of glycophospholipid-anchored and transmembrane forms of D4 by different endocytic pathways. EMBO J. 11, 863–874 (1992).

    Article  CAS  Google Scholar 

  25. Clohisy, D. R., Bar-Shavit, Z., Chappel, J. & Teitelbaum, S. L. 1,25-Dihydroxyvitamin D3 modulates bone marrow macrophage precursor proliferation and differentiation. J. Biol. Chem. 262, 15922–15929 (1987).

    CAS  PubMed  Google Scholar 

  26. Orndorff, P. E. & Falkow, S. Organization and expression of genes responsible for type 1 piliation in Escherichia coli. J. Bact. 159, 736–744 (1984).

    CAS  PubMed  Google Scholar 

  27. Abraham, S. N., Sun, D., Dale, J. B. & Beachey, E. H. Conservation of the D-mannose-adhesion proteinamong type 1 fimbriated members of the family Enterobacteriaceae. Nature 336, 682–684 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Keith, B. R., Maurer, L., Spears, P. A. & Orndorff, P. E. Receptor-binding function of type 1 pili effects bladder colonization by a clinical isolate of Escherichia coli. Infect. Immun. 53, 693–696 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Berger, K. H. & Isberg, R. R. Intracellular survival by Legionella. Meth. Cell Biol. 45, 247–259 (1994).

    Article  CAS  Google Scholar 

  30. Blueb, J. L., Gallois, A., Schneider, J. C., Parini, J. P. & Tschirhart, E. Adouble-labeling fluorescent assay for concomitant measurements of [Ca2+]iand O2production in human macrophages. Biochim. Biophys. Acta. 1244, 79–84 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Haslam and I. Ofek for discussion, R. Henry for electron microscopy, and P. Orndorff for the gift of E. coli J96 and its FimH derivative. This work was supported in part by research grants from the NIH and from an award from the Jewish Hospital Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soman N. Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baorto, D., Gao, Z., Malaviya, R. et al. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389, 636–639 (1997). https://doi.org/10.1038/39376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39376

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing