Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

On/off blinking and switching behaviour of single molecules of green fluorescent protein

Abstract

Optical studies of individual molecules at low and room temperature can provide information about the dynamics of local environments in solids, liquids and biological systems unobscured by ensemble averaging1,2,3,4,5,6,7,8,9,10,11,12,13,14. Here we present a study of the photophysical behaviour of single molecules of the green fluorescent protein (GFP) derived from the jellyfish Aequorea victoria. Wild-type GFP and its mutant have attracted interest as fluorescent biological labels because the fluorophore may be formed in vivo15,16. GFP mutants immobilized in aereated aqueous polymer gels and excited by 488-nm light undergo repeated cycles of fluorescent emission (‘blinking’) on a timescale of several seconds—behaviour that would be unobservable in bulk studies. Eventually the individual GFP molecules reach a long-lasting dark state, from which they can be switched back to the original emissive state by irradiation at 405 nm. This suggests the possibility of using these GFPs as fluorescent markers for time-dependent cell processes, and as molecular photonic switches or optical storage elements, addressable on the single-molecule level.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bulk spectra of GFP mutants.
Figure 2: The switching behaviour of a single T203F molecule, illustrated by a series of ten consecutive experiments on the same molecule.
Figure 3: Traces of typical fluorescence intensity versus time for T203Y (a) and T203F (b) with an excitation intensity of 2,000 W cm−2.
Figure 4: Histograms of single-molecule autocorrelation times τc as a function of incident intensity; average autocorrelation times, τcavg, are calculated from the distributions.
Figure 5: Schematic diagram of the various states consistent with the experimental observations as described in the text.

Similar content being viewed by others

References

  1. Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Reilly, P. D. & Skinner, J. L. Spectral diffusion of single molecule fluorescence: a probe of low-frequency localized excitations in disordered crystals. Phys. Rev. Lett. 71, 4257–4260 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Moerner, W. E. Examining nanoenvironments in solids on the scale of a single, isolated molecule. Science 265, 46–53 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Barbara, P. F. & Moerner, W. E. (eds Single molecules and atoms. Acc. Chem. Res. 29, (1996).

  6. Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1428 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Ambrose, W. P., Goodwin, P. M., Martin, J. C. & Keller, R. A. Alterations of single molecule fluorescence lifetimes in near-field optical microscopy. Science 265, 364–367 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Nie, S., Chiu, D. T. & Zare, R. N. Probing individual molecules with confocal fluorescence microscopy. Science 266, 1018–1021 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Trautman, J. K. & Macklin, J. J. Time-resolved spectroscopy of single molecules using near-field and far-field optics. Chem. Phys. 205, 221–229 (1996).

    Article  CAS  Google Scholar 

  10. Lu, H. P. & Xie, X. S. Single-molecule spectral fluctuations at room temperature. Nature 385, 143–146 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Schmidt, T., Schutz, G. J., Baumgartner, W., Gruber, H. J. & Schindler, H. Imaging of single molecule diffusion. Proc. Natl Acad. Sci. USA 93, 2926–2929 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Basché, T., Moerner, W. E., Orrit, M. & Wild, U. P. (eds Single Molecule Optical Detection, Imaging, and Spectroscopy(Verlag-Chemie, Munich, (1997)).

    Google Scholar 

  15. Heim, R., Prasher, D. C. & Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl Acad. Sci. USA 91, 12501–12504 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Cubitt, A. B. et al. Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448–455 (1995).

    Article  CAS  Google Scholar 

  17. Chattoraj, M., King, B. A., Bublitz, G. U. & Boxer, S. G. Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and protein transfer. Proc. Natl Acad. Sci USA 93, 8362–8367 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Brejc, K. et al. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl. Acad. USA 94, 2306–2322 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Yang, F., Moss, L. G. & Phillips, J. G. N. The molecular structure of green fluorescent protein. Nature Biotechnol. 14, 1246–1251 (1996).

    Article  CAS  Google Scholar 

  21. Dickson, R. M., Norris, D. J., Tzeng, Y. -L. & Moerner, W. E. Three dimensional imaging of single molecules in pores of poly(acrylamide) gels. Science 274, 966–969 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Moerner, W. E. et al. Optical probing of single molecules of terrylene in a Shpolskii matrix—a two-state single-molecule switch. J. Phys. Chem. 98, 7382–7389 (1994).

    Article  CAS  Google Scholar 

  23. Stuart, J. A., Tallent, J. R., Tan, E. H. L. & Birge, R. R. in Sixth Biennial IEEE Intl Nonvolatile Memory Technol. Conf. Proc. 35–51 (IEEE, Albuquerque, NM, (1996)).

    Google Scholar 

  24. Sakmann, B. & Neher, E. Single Channel Recording(Plenum, New York, (1995)).

    Google Scholar 

  25. Yokoe, H. & Meyer, T. Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nature Biotechnol. 14, 1252–1256 (1996).

    Article  CAS  Google Scholar 

  26. Irie, M. in Photo-reactive Materials for Ultrahigh Density Optical Memory(ed. Irie, M.) 1–12 (Elsevier Science, Amsterdam, (1994)).

    Google Scholar 

  27. Parthenopoulos, D. A. & Rentzepis, P. M. Three-dimensional optical storage memory. Science 245, 843–845 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Kunkel, T. A., Roberts, J. D. & Zakour, R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Meth. Enzymol. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  29. Fawcett, J. S. & Morris, C. J. O. R. Molecular-sieve chromatography of proteins on granulated polyacrylamide gels. Separat. Sci. 1, 9–26 (1966).

    Article  CAS  Google Scholar 

  30. Box, G. E. P. & Jenkins, G. M. Time Series Analysis Forecasting and Control(Holden-Day, San Francisco, (1970)).

    MATH  Google Scholar 

Download references

Acknowledgements

We thank L. S. B. Goldstein and S. Kummer for discussions. This work was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. E. Moerner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickson, R., Cubitt, A., Tsien, R. et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997). https://doi.org/10.1038/41048

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41048

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing