Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China

Abstract

The initial desertification in the Asian interior is thought to be one of the most prominent climate changes in the Northern Hemisphere during the Cenozoic era1,2,3,4. But the dating of this transition is uncertain, partly because desert sediments are usually scattered, discontinuous and difficult to date. Here we report nearly continuous aeolian deposits covering the interval from 22 to 6.2 million years ago, on the basis of palaeomagnetic measurements and fossil evidence. A total of 231 visually definable aeolian layers occur as brownish loesses interbedded with reddish soils. This new evidence indicates that large source areas of aeolian dust and energetic winter monsoon winds to transport the material must have existed in the interior of Asia by the early Miocene epoch, at least 14 million years earlier than previously thought3,5. Regional tectonic changes and ongoing global cooling are probable causes of these changes in aridity and circulation in Asia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Morphological, geochemical and sedimentological properties of the Qinan aeolian deposits.
Figure 3: Magnetostratigraphy and magnetic susceptibility of the Qinan aeolian sequences and late Cenozoic dust accumulation rate in northern China.

Similar content being viewed by others

References

  1. Ruddiman, W. F. & Kutzbach, J. E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J. Geophys. Res. 94, 18409–18427 (1989).

    Article  ADS  Google Scholar 

  2. Manabe, S. & Broccoli, A. J. Mountains and arid climates of middle latitudes. Science 247, 192–195 (1990).

    Article  ADS  CAS  Google Scholar 

  3. An, Z. S., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001).

    Article  ADS  CAS  Google Scholar 

  4. Ramstein, G., Fluteau, F., Besse, J. & Joussaume, S. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Guo, Z. T., Peng, S. Z., Hao, Q. Z., Biscay, P. E. & Liu, T. S. Origin of the Miocene-Pliocene Red-Earth formation at Xifeng in northern China and implications for paleoenvironments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 170, 11–26 (2001).

    Article  Google Scholar 

  6. Whalley, W. B., Marshall, J. R. & Smith, B. J. Origin of desert loess from some experimental observations. Nature 300, 433–435 (1982).

    Article  ADS  Google Scholar 

  7. Liu, T. S. Loess and the Environment (China Ocean, Beijing, 1985).

    Google Scholar 

  8. Kukla, G., An, Z. S., Melice, J. L., Gavin, J. & Xiao, J. L. Magnetic susceptibility record of Chinese loess. Trans. R. Soc. Edinb. Earth Sci. 81, 263–288 (1990).

    Article  Google Scholar 

  9. Sun, D. H., An, Z. S., Shaw, J., Bloemendal, J. & Sun, Y. B. Magnetostratigraphy and paleoclimatic significance of Late Tertiary aeolian sequences in the Chinese Loess Plateau. Geophys. J. Int. 134, 207–212 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Sun, D. H., Shaw, J., An, Z. S., Chen, M. Y. & Yue, L. P. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma late Cenozoic eolian sediments from the Chinese Loess Plateau. Geophys. Res. Lett. 25, 85–88 (1998).

    Article  ADS  Google Scholar 

  11. Ding, Z. L. et al. Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China. Earth Planet. Sci. Lett. 161, 135–143 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Duchaufour, Ph. Pédologie Tome 1 Pédogenèse et Classification (Masson, Paris/New York/Barcelone/Milan, 1983).

    Google Scholar 

  13. Maher, B. A. Characterization of soils by mineral magnetic measurements. Phys. Earth Planet. Inter. 42, 76–92 (1986).

    Article  ADS  Google Scholar 

  14. Guo, Z. T. et al. Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic. Glob. Planet. Change 18, 113–128 (1998).

    Article  ADS  Google Scholar 

  15. Pye, K. & Sperling, C. H. B. Experimental investigation of silt formation by static breakage processes: the effect of temperature, moisture and salt on quartz dune sand and granitic regolith. Sedimentology 30, 49–62 (1983).

    Article  ADS  Google Scholar 

  16. Zheng, S. H. in Rodent and Lagomorph Families of Asian Origins and Diversification (eds Tomida, Y., Li, C. K. & Setoguchi, T.) 57–76 (National Science Museum Monographs 8, Tokyo, 1994).

    Google Scholar 

  17. Mein, P. in European Neogene Mammal Chronology (eds Lindsay, E. H., Fahlbusch, V. & Mein, P.) 73–90 (NATO ASI Series A 180, Plenum, New York, 1990).

    Book  Google Scholar 

  18. Qiu, Z. D. Middle Miocene Micromammalian Fauna from Tunggur, Nei Mongol (Science, Beijing, 1996).

    Google Scholar 

  19. Qiu, Z. X., Xu, W. Y. & Qiu, Z. D. in The Miocene Land Mammals of Europe (eds Rössner, G. & Heissig, K.) 443–455 (Pfeil, München, 1999).

    Google Scholar 

  20. Bruijn, H., Hussain, S. T. & Leinders, J. J. M. Fossil rodents from the Murree formation near Banda Daud Shah, Kohat, Pakistan. Proc. Koninklijke Nederlandse Akad. Wetenschappen Ser. B 84, 71–99 (1981).

    Google Scholar 

  21. Cande, S. C. & Kent, D. V. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. J. Geophys. Res. 100, 6093–6095 (1995).

    Article  ADS  Google Scholar 

  22. Berger, A., Loutre, M. F. & Laskar, J. Stability of the astronomical frequencies over the Earth's history for paleoclimate studies. Science 255, 560–566 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Zhang, X. Y., Arimoto, R. & An, Z. S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res. 102, 28041–28047 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Wang, H. Z. (ed.) Atlas of the Paleogeography of China 121–123 (Cartographic, Beijing, 1985).

    Google Scholar 

  25. Chung, S. L. et al. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature 394, 769–773 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Harrison, T. M., Copeland, P., Kidd, W. S. F. & Yin, A. Raising Tibet. Science 255, 1663–1670 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Jansen, E. & Sjoholm, J. Reconstruction of glaciation over the past 6 Myr from ice-borne deposits in the Norwegian Sea. Nature 349, 600–603 (1991).

    Article  ADS  Google Scholar 

  28. Wolfe, J. A. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archaean to Present (eds Sundquist, E. T. & Broecker, W. S.) 357–375 (Monograph 32, American Geophysical Union, Washington DC, 1985).

    Google Scholar 

  29. Miller, K. G., Fairbanks, R. G. & Mountain, G. S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2, 1–19 (1987).

    Article  ADS  Google Scholar 

  30. Rea, D. K., Snoeckx, H. & Joseph, L. H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography 13, 215–224 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank W. Wu, Z. Qiu, S. Zheng and Z. Qiu for the identification of micromammalian fossils, and Z.S. An, J. Guiot and R. Potts for discussions. This work is supported by the National Natural Science Foundation of China, the National Project for Basic Research on Tibetan Plateau, Chuangxin and Bairen Programs of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. T. Guo.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Ruddiman, W., Hao, Q. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002). https://doi.org/10.1038/416159a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416159a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing