Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Using the fossil record to estimate the age of the last common ancestor of extant primates

Abstract

Divergence times estimated from molecular data often considerably predate the earliest known fossil representatives of the groups studied. For the order Primates, molecular data calibrated with various external fossil dates uniformly suggest a mid-Cretaceous divergence from other placental mammals, some 90 million years (Myr) ago1,2,3,4,5,6,7,8,9, whereas the oldest known fossil primates are from the basal Eocene epoch (54–55 Myr ago). The common ancestor of primates should be earlier than the oldest known fossils10,11, but adequate quantification is needed to interpret possible discrepancies between molecular and palaeontological estimates. Here we present a new statistical method, based on an estimate of species preservation derived from a model of the diversification pattern, that suggests a Cretaceous last common ancestor of primates, approximately 81.5 Myr ago, close to the initial divergence time inferred from molecular data. It also suggests that no more than 7% of all primate species that have ever existed are known from fossils. The approach unites all the available palaeontological methods of timing evolutionary events: the fossil record, extant species and clade diversification models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An illustration of the stochastic model of fossil finds.
Figure 2: Mid-range of geographical distribution for individual modern and fossil primate species.

Similar content being viewed by others

References

  1. Janke, A., Feldmaier-Fuchs, G., Thomas, W. K., von Haeseler, A. & Pääbo, S. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics 137, 243–256 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Easteal, S., Collett, C. & Betty, D. The Mammalian Molecular Clock (Landes, Austin, 1995).

    Google Scholar 

  3. Hedges, S. B., Parker, P. H., Sibley, C. G. & Kumar, S. Continental breakup and the ordinal diversification of birds and mammals. Nature 381, 226–229 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Springer, M. S. et al. Endemic African mammals shake the phylogenetic tree. Nature 388, 61–64 (1997).

    Article  CAS  Google Scholar 

  5. Arnason, U., Gullberg, A. & Janke, A. Molecular timing of primate divergences as estimated by two nonprimate calibration points. J. Mol. Evol. 47, 718–727 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Huelsenbeck, J. P., Larget, B. & Swofford, D. A compound Poisson process for relaxing the molecular clock. Genetics 154, 1879–1892 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Madsen, O. et al. Parallel adaptive radiations in two major clades of placental mammals. Nature 409, 610–614 (2001).

    Article  ADS  CAS  Google Scholar 

  8. Murphy, W. J. et al. Molecular phylogenetics and the origins of placental mammals. Nature 409, 614–618 (2001).

    Article  ADS  CAS  Google Scholar 

  9. Eizirik, E., Murphy, W. J. & O'Brien, S. J. Molecular dating and biogeography of the early placental mammal radiation. J. Hered. 92, 212–219 (2001).

    Article  CAS  Google Scholar 

  10. Martin, R. D. Primate origins: plugging the gaps. Nature 363, 223–234 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Martin, R. D. in Major Topics in Primate and Human Evolution (eds Wood, B. A., Martin, L. B. & Andrews, P.) 1–31 (Cambridge Univ. Press, Cambridge, 1986).

    Google Scholar 

  12. Marshall, C. R. in The Adequacy of the Fossil Record (eds Donovan, S. K. & Paul, C. R. C.) 23–53 (Wiley, London, 1998).

    Google Scholar 

  13. Harris, T. E. The Theory of Branching Processes (Springer, Berlin, 1963).

    Book  Google Scholar 

  14. Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Phil. Trans. R. Soc. Lond. B 344, 305–311 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Raup, D. M., Gould, S. J., Schopf, T. M. & Simberloff, D. S. Stochastic models of phylogeny and the evolution of diversity. J. Geol. 81, 525–542 (1973).

    Article  ADS  Google Scholar 

  16. MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).

    Article  Google Scholar 

  17. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, Princeton, New Jersey, 1967).

    Google Scholar 

  18. Sepkoski, J. J. Jr A kinetic model of Phanerozoic taxonomic diversity: I. Analysis of marine orders. Paleobiology 4, 223–225 (1978).

    Article  Google Scholar 

  19. Alroy, J. in Biodiversity Dynamics (eds McKinney, M. L. & Drake, J. A.) 232–287 (Columbia Univ. Press, New York, 1998).

    Google Scholar 

  20. Foote, M., Hunter, J. P., Janis, C. M. & Sepkoski, J. J. Jr Evolutionary and preservational constraints on origins of biological groups: divergence times of eutherian mammals. Science 283, 1310–1314 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Foote, M. & Sepkoski, J. J. Absolute measures of the completeness of the fossil record. Nature 398, 415–417 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Alroy, J. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280, 731–733 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Alroy, J. Quantitative mammalian biochronology and biogeography of North America. PhD dissertation. Univ. Chicago (1994).

  24. Gingerich, P. D. & Uhen, M. D. Time of origin of primates. J. Hum. Evol. 27, 443–445 (1994).

    Article  Google Scholar 

  25. Foote, M. Estimating taxonomic durations and preservation probability. Paleobiology 23, 278–300 (1997).

    Article  Google Scholar 

  26. Martin, R. D. Primate Origins and Evolution: A Phylogenetic Reconstruction (Chapman Hall/Princeton Univ. Press, London/New Jersey, 1990).

    Google Scholar 

  27. Davison, A. C. & Hinkley, D. V. Bootstrap Methods and their Applications (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  28. Wolfheim, J. H. Primates of the World: Distribution Abundance and Conservation (Univ. Washington Press, Seattle/London, 1983).

    Google Scholar 

Download references

Acknowledgements

We thank U. Arnason, A. Müller and U. Thalmann for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Tavaré.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavaré, S., Marshall, C., Will, O. et al. Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature 416, 726–729 (2002). https://doi.org/10.1038/416726a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416726a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing