Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

AP-1 functions upstream of CREB to control synaptic plasticity in Drosophila

Abstract

Activity-regulated gene expression mediates many aspects of neural plasticity, including long-term memory. In the prevailing view, patterned synaptic activity causes kinase-mediated activation of the transcription factor cyclic AMP response-element-binding protein, CREB. Together with appropriate cofactors, CREB then transcriptionally induces a group of ‘immediate–early’ transcription factors and, eventually, effector proteins that establish or consolidate synaptic change1. Here, using a Drosophila model synapse, we analyse cellular functions and regulation of the best known immediate–early transcription factor, AP-1; a heterodimer of the basic leucine zipper proteins Fos and Jun2. We observe that AP-1 positively regulates both synaptic strength and synapse number, thus showing a greater range of influence than CREB3. Observations from genetic epistasis and RNA quantification experiments indicate that AP-1 acts upstream of CREB, regulates levels of CREB messenger RNA, and functions at the top of the hierarchy of transcription factors known to regulate long-term plasticity. A Jun-kinase signalling module provides a CREB-independent route for neuronal AP-1 activation; thus, CREB regulation of AP-1 expression4 may, in some neurons, constitute a positive feedback loop rather than the primary step in AP-1 activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuronal AP-1 controls bouton number and synaptic strength.
Figure 2: Both CREB and a cAMP-sensitive activity are required downstream of AP-1 to regulate synapse strength but not bouton number.
Figure 3: JNK signalling regulates AP-1-dependent synaptic plasticity.
Figure 4: A model for plasticity regulation at the Drosophila larval neuromuscular synapse.

Similar content being viewed by others

References

  1. Bailey, C. H., Bartsch, D. & Kandel, E. R. Toward a molecular definition of long-term memory storage. Proc. Natl Acad. Sci. USA 93, 13445–13452 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Curran, T. & Morgan, J. I. Fos: an immediate-early transcription factor in neurons. J. Neurobiol. 26, 403–412 (1995)

    Article  CAS  PubMed  Google Scholar 

  3. Davis, G. W., Schuster, C. M. & Goodman, C. S. Genetic dissection of structural and functional components of synaptic plasticity. III. CREB is necessary for presynaptic functional plasticity. Neuron 17, 669–679 (1996)

    Article  CAS  PubMed  Google Scholar 

  4. Sheng, M., McFadden, G. & Greenberg, M. E. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4, 571–582 (1990)

    Article  CAS  Google Scholar 

  5. Yin, J. C., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115 (1995)

    Article  CAS  PubMed  Google Scholar 

  6. Bartsch, D. et al. Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell 83, 979–992 (1995)

    Article  CAS  PubMed  Google Scholar 

  7. Josselyn, S. A. et al. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J. Neurosci. 21, 2404–2412 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Sheng, M. & Greenberg, M. E. The regulation and function of c-fos and other immediate-early genes in the nervous system. Neuron 4, 477–485 (1990)

    Article  CAS  PubMed  Google Scholar 

  9. Kelz, M. B. et al. Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401, 272–276 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Kockel, L., Homsy, J. G. & Bohmann, D. Drosophila AP-1: lessons from an invertebrate. Oncogene 20, 2347–2364 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Davis, G. W. & Goodman, C. S. Genetic analysis of synaptic development and plasticity: homeostatic regulation of synaptic efficacy. Curr. Opin. Neurobiol. 8, 149–156 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Zhong, Y., Budnik, V. & Wu, C. F. Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade. J. Neurosci. 12, 644–651 (1992)

    Article  CAS  PubMed  Google Scholar 

  13. Schuster, C. M., Davis, G. W., Fetter, R. D. & Goodman, C. S. Genetic dissection of structural and functional components of synaptic plasticity. Fasciclin II controls presynaptic structural plasticity. Neuron 17, 641–654 (1996)

    Article  CAS  PubMed  Google Scholar 

  14. Bailey, C. H., Chen, M., Keller, F. & Kandel, E. R. Serotonin-mediated endocytosis of apCAM: an early step of learning-related synaptic growth in Aplysia. Science 256, 645–649 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Eresh, S., Riese, J., Jackson, D. B., Bohmann, D. & Bienz, M. A CREB-binding site as a target for decapentaplegic signalling during Drosophila endoderm induction. EMBO J. 16, 2014–2022 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. Zeitlinger, J. et al. Defective dorsal closure and loss of epidermal decapentaplegic expression in Drosophila fos mutants. EMBO J. 16, 7393–7401 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. Karin, M., Liu, Z. & Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246 (1997)

    Article  CAS  Google Scholar 

  18. Cheung, U. S., Shayan, A. J., Boulianne, G. L. & Atwood, H. L. Drosophila larval neuromuscular junction's responses to reduction of cAMP in the nervous system. J. Neurobiol. 40, 1–13 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Yin, J. C. et al. Induction of a dominant-negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58 (1994)

    Article  CAS  PubMed  Google Scholar 

  20. Osterwalder, T., Yoon, K., White, B. & Keshishian, H. A conditional tissue-specific transgene system using inducible Gal4. Proc. Natl Acad. Sci. USA 98, 12596–12601 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Riesgo-Escovar, J. R., Jenni, M., Fritz, A. & Hafen, E. The Drosophila Jun-N-terminal kinase is required for cell morphogenesis but not for DJun-dependent cell fate specification in the eye. Genes Dev. 10, 2759–2768 (1996)

    Article  CAS  PubMed  Google Scholar 

  23. Yang, D. D. et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the JNK3 gene. Nature 389, 865–870 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Schwarzschild, M. A., Cole, R. L. & Hyman, S. E. Glutamate, but not dopamine, stimulates stress-activated protein kinase and AP-1-mediated transcription in striatal neurons. J. Neurosci. 17, 3455–3466 (1997)

    Article  CAS  PubMed  Google Scholar 

  25. Sagasti, A. et al. The CaMKII unc-43 activates the MAPKKK nsy-1 to execute a lateral signalling decision required for asymmetric olfactory neuron fates. Cell 105, 221–232 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Martin-Blanco, E. et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 12, 557–570 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. DeZazzo, J. et al. nalyot, a mutation of the Drosophila myb-related Adf1 transcription factor, disrupts synapse formation and olfactory memory. Neuron 27, 145–158 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J. & Wu, C. F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol. A 175, 179–191 (1994)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Bohmann and E. Hafen for strains, and T. Littleton and H. Bellen for anti-Syt antibodies. We also thank H. Keshishian and T. Osterwalder for sharing elavGS-GLA4 strains before publication; P. Etter for early assistance; D. Stimson for advice on electrophysiology; and P. Jansma for help with confocal microscopy. We thank P. Etter, R. Narayanan and members of the Ramaswami laboratory for useful discussions and/or comments on the manuscript. The work was funded by grants from the National Institute on Drug Abuse (primarily), the National Institute for Neurological Disorders and Stroke, the Human Frontiers Science Program Organization, McKnight and Alfred P. Sloan Foundations to M.R., and NSF and NIH predoctoral fellowships to C.A.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Ramaswami.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanyal, S., Sandstrom, D., Hoeffer, C. et al. AP-1 functions upstream of CREB to control synaptic plasticity in Drosophila. Nature 416, 870–874 (2002). https://doi.org/10.1038/416870a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416870a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing