Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crustacean appendage evolution associated with changes in Hox gene expression

Abstract

Homeotic (Hox) genes specify the differential identity of segments along the body axis of insects. Changes in the segmental organization of arthropod bodies may therefore be driven by changes in the function of Hox genes1,2,3, but so far this has been difficult to demonstrate. We show here that changes in the expression pattern of the Hox genes Ubx and AbdA in different crustaceans correlate well with the modification of their anterior thoracic limbs into feeding appendages (maxillipeds). Our observations provide direct evidence that major morphological changes in arthropod body plans are associated with changes in Hox gene regulation. They suggest that homeotic changes1,4 may play a role in the normal process of adaptive evolutionary change.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crustaceans with no maxillipeds.
Figure 2: Crustaceans with one pair of maxillipeds.
Figure 3: Crustaceans with several pairs of maxillipeds.
Figure 4: Phylogenetic distribution of different patterns of segmental specialization and Ubx–AbdA expression among crustaceans.

Similar content being viewed by others

References

  1. Lewis, E. B. Agene complex controlling segmentation in Drosophila. Nature 276, 567–570 (1978).

    ADS  Google Scholar 

  2. Raff, R. A. & Kaufman, T. C. Embryos, Genes, and Evolution (Indiana University Press, Bloomington, 1991).

    Google Scholar 

  3. Akam, M., Dawson, I. & Tear, G. Homeotic genes and the control of segment diversity. Development 104 (suppl.), 123–133 (1988).

    Google Scholar 

  4. Bateson, W. Materials for the Study of Variation, Treated with Especial Regard to Discontinuity in the Origin of Species (Macmillan, London, 1894).

    Google Scholar 

  5. Averof, M. & Akam, M. HOM/Hox genes of Artemia: implications for the origin of insect and crustacean body plans. Curr. Biol. 3, 73–78 (1993).

    Article  CAS  Google Scholar 

  6. Averof, M., Dawes, R. & Ferrier, D. Diversification of arthropod Hox genes as a paradigm for the evolution of gene functions. Sem. Dev. Cell. Biol. 7, 539–551 (1996).

    Article  CAS  Google Scholar 

  7. Averof, M. & Akam, M. Hox genes and the diversification of insect and crustacean body plans. Nature 376, 420–423 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Panganiban, G., Sebring, A., Nagy, L. & Carroll, S. The development of crustacean limbs and the evolution of arthropods. Science 270, 1363–1366 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Calman, W. T. Crustacea (Black, London, 1909).

    Google Scholar 

  10. Giesbrecht, W. in Handwörterbuch der Naturwissecschaften (ed. Dittler, R.) 800–840 (Fischer, Jena, 1931).

    Google Scholar 

  11. Schram, F. R. Crustacea (Oxford University Press, Oxford, 1986).

    Google Scholar 

  12. Brusca, R. C. & Brusca, G. J. Invertebrates 1–922 (Sinauer, Sunderland Massachusetts, 1990).

    Google Scholar 

  13. Kelsh, R., Weinzierl, R. O. J., White, R. A. H. & Akam, M. Homeotic gene expression in the locust Schistocerca: an antibody that detects conserved epitopes in Ultrabithorax and Abdominal-A proteins. Dev. Genet. 15, 19–31 (1994).

    Article  CAS  Google Scholar 

  14. McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning. Cell 68, 283–302 (1992).

    Article  CAS  Google Scholar 

  15. Akam, M. Hox genes and the evolution of diverse body plans. Phil. Trans. R. Soc. Lond. B 349, 313–319 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebral axial morphology. Development 121, 333–346 (1995).

    CAS  PubMed  Google Scholar 

  17. Gaunt, S. J. Conservation in the Hox code during morphological evolution. Int. J. Dev. Biol. 38, 549–552 (1994).

    CAS  PubMed  Google Scholar 

  18. Castelli-Gair, J., Greig, S., Micklem, G. & Akam, M. Dissecting the temporal requirements for homeotic gene function. Development 120, 1983–1995 (1994).

    CAS  PubMed  Google Scholar 

  19. Castelli-Gair, J. & Akam, M. How the Hox gene Ultrabithorax specifies two different segments: the significance of spatial and temporal regulation within metemeres. Development 121, 2973–2982 (1995).

    CAS  PubMed  Google Scholar 

  20. Salser, S. J. & Kenyon, C. A. C. elegans Hox gene switches on, off, on, and off again to regulate proliferation, differentiation, and morphogenesis. Development 122, 1651–1661 (1996).

    CAS  PubMed  Google Scholar 

  21. Briggs, D. E. G. The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea, Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia. Phil. Trans. R. Soc. Lond. B 281, 439–487 (1978).

    Article  ADS  Google Scholar 

  22. Muller, K. J. & Walossek, D. External morphology and larval development of the Upper Cambrian maxillopod Bredocaris admirabilis. Foss. Strat. 23, 1–70 (1988).

    Google Scholar 

  23. Walossek, D. The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Foss. Strat. 32, 1–202 (1993).

    Google Scholar 

  24. Wagner, G. P. The biological homology concept. Annu. Rev. Ecol. Syst. 20, 51–69 (1989).

    Article  Google Scholar 

  25. Patel, N. H., Kornberg, T. B. & Goodman, C. S. Expression of engrailed during segmentation in grasshopper and crayfish. Development 107, 201–212 (1989).

    CAS  PubMed  Google Scholar 

  26. Patel, N. H. in Methods in Cell Biology, 44. Drosophila Melanogaster: Practical Uses in Cell Biology (eds Goldstein, L. S. B. & Fyrberg, E.) 445–487 (Academic, New York, 1994).

    Google Scholar 

Download references

Acknowledgements

We thank M. Akam and F. Ferrari for discussion; K. Rützler and the Smithsonian Institution for hosting our collecting expeditions at Carrie Bow Caye in Belize; R. White for the FP6.87 antibody; G. Wyngaard for Mesocyclops; E. Chang for Homarus embryos; M. Sepanski for help with electron microscopy; A. Crittenden and L. Brown for technical assistance; and M. Palopoli, R. Chasan and S. Cohen for comments on the manuscript. This work was supported by the Wellcome Trust (M.A.), the Carnegie Institution of Washington, and the Howard Hughes Medical Institute (N.H.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nipam H. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Averof, M., Patel, N. Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388, 682–686 (1997). https://doi.org/10.1038/41786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41786

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing