Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Binding of paxillin to α4 integrins modifies integrin-dependent biological responses

Abstract

The α4 integrins are indispensable for embryogenesis, haematopoiesis and immune responses1,2, possibly because α4 regulates cellular functions differently from other integrins through its cytoplasmic tail3. We used novel mimics4 of the α4 tail to identify molecules that could account for α4-specific signalling. Here we report that the α4 tail, but not several other α-subunit tails, binds tightly to the signalling adaptor paxillin. Paxillin physically associated with α4 integrins in Jurkat T cells at high stoichiometry, and joining the α4 tail to αIIb resulted in a complex of integrin αIIbβ3 with paxillin. This association markedly enhanced the rates of αIIbβ3-dependent phosphorylation of focal adhesion kinase and cell migration. It also reduced cell spreading, focal adhesion and stress fibre formation. A point mutation within the α4 tail that disrupts paxillin binding reversed all of these effects. Furthermore, α4β1-dependent adhesion to VCAM-1 led to spreading of mouse embryonic fibroblasts derived from paxillin-null but not from wild-type mice. Thus, the tight association of paxillin with the α4 tail leads to distinct biochemical and biological responses to integrin-mediated cell adhesion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preferential binding of paxillin to the α4 tail (see also Supplementary Information).
Figure 2: Association of paxillin with α4β1 (see also Supplementary Information).
Figure 3: The α4 tail increases the association of integrins with paxillin (see also Supplementary Information).
Figure 4: Association of the α4 tail with paxillin inhibits cell spreading (see also Supplementary Information).
Figure 5: The α4 tail changes the kinetics of FAK phosphorylation (see also Supplementary Information).
Figure 6: Inhibition of FA formation and enhancement of cell migration by the α4 tail depends on its paxillin-binding site (see also Supplementary Information).

Similar content being viewed by others

References

  1. Stewart,M., Thiel,M. & Hogg,N. Leukocyte integrins. Curr. Opin. Cell Biol. 7, 690–696 (1995).

    Article  CAS  Google Scholar 

  2. Shimizu,Y., Rose,D. M. & Ginsberg,M. H. Integrins in the immune system. Adv. Immunol. 72, 325–380 (1999).

    Article  CAS  Google Scholar 

  3. Hemler,M. E., Kassner,P. D. & Chan,B. M. C. Functional roles for integrin alpha subunit tails. Cold Spring Harbor Symposia on Quant. Biol. 57, 213–220 (1992).

    Article  CAS  Google Scholar 

  4. Pfaff,M., Liu,S., Erle,D. J. & Ginsberg,M. H. Integrin β tails differentially bind to cytoskeletal proteins. J. Biol. Chem. 273, 6104–6109 (1998).

    Article  CAS  Google Scholar 

  5. Williams,M. J., Hughes,P. E., O'Toole,T. E. & Ginsberg,M. H. The inner world of cell adhesion: integrin tails. Trends Cell Biol. 4, 109–112 (1994).

    Article  CAS  Google Scholar 

  6. Sastry,S. K. & Horwitz,A. F. Integrin tails: mediators of cytoskeletal linkages and extra- and intracellular initiated transmembrane signaling. Curr. Opin. Cell Biol. 5, 819–831 (1993).

    Article  CAS  Google Scholar 

  7. Shibanuma,M. et al. Induction of senesence-like phenotypes by forced expression of the hic-5, which encodes a novel LIM motif protein, in immortalized human fibroblasts. Mol. Cell. Biol. 17, 1224–1235 (1994).

    Article  Google Scholar 

  8. Lipsky,B. P., Beals,C. R. & Staunton,D. E. Leupaxin is a novel LIM domain protein that forms a complex with PYK2. J. Biol. Chem. 273, 11709–11713 (1998).

    Article  CAS  Google Scholar 

  9. Hagmann,J., Grob,M., Welman,A., van Willigen,G. & Burger,M. M. Recruitment of the LIM protein hic-5 to focal contacts of human platelets. J. Cell Sci. 11, 2181–2188 (1998).

    Google Scholar 

  10. Hughes,P. E. et al. Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 88, 521–530 (1997).

    Article  CAS  Google Scholar 

  11. Turner,C. E. Paxillin. Int. J. Biochem. Cell Biol. 30, 955–959 (1998).

    Article  CAS  Google Scholar 

  12. Ilic,D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Cary,L. A., Chang,J. F. & Guan,J.-L. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J. Cell Sci. 109, 1787–1794 (1996).

    CAS  PubMed  Google Scholar 

  14. Kassner,P. D., Alon,R., Springer,T. A. & Hemler,M. Specialized functional properties of the integrin α4 tail. Mol. Biol. Cell 6, 661–674 (1995).

    Article  CAS  Google Scholar 

  15. Hemler,M. E. Integrin associated proteins. Curr. Opin. Cell. Biol. 10, 578–585 (1998).

    Article  CAS  Google Scholar 

  16. Lauffenburger,D. A. & Horwitz,A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  17. Parsons,J. T. & Parsons,S. J. Src family protein tyrosine kinases: cooperating with growth factor and adhesion signaling pathways. Curr. Opin. Cell Biol. 9, 187–192 (1997).

    Article  CAS  Google Scholar 

  18. Hanks,S. K. & Polte,T. R. Signaling through focal adhesion kinase. Bioessays 19, 137–145 (1997).

    Article  CAS  Google Scholar 

  19. Klinghoffer,R. A., Sachsenmaier,C., Cooper,J. A. & Soriano,P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).

    Article  CAS  Google Scholar 

  20. Fincham,V. J. & Frame,M. C. The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. EMBO J. 17, 81–92 (1998).

    Article  CAS  Google Scholar 

  21. Turner,C. E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863 (1999).

    Article  CAS  Google Scholar 

  22. Shen,Y., Schneider,G., Cloutier,J. F., Veillette,A. & Schaller,M. D. Direct association of protein-tyrosine phosphatase PTP-PEST with paxillin. J. Biol. Chem. 273, 6474–6481 (1998).

    Article  CAS  Google Scholar 

  23. Angers-Loustau,A. et al. Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts. J. Cell Biol. 144, 1019–1031 (1999).

    Article  CAS  Google Scholar 

  24. Klemke,R. L. et al. CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. J. Cell Biol. 140, 961–972 (1998).

    Article  CAS  Google Scholar 

  25. Thomas,S. M., Soriano,P. & Imamoto,A. Specific and redundant roles of Src and Fyn in organizing the cytoskeleton. Nature 376, 267–271 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Salgia,R. et al. Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL. J. Biol. Chem. 270, 5039–5047 (1995).

    Article  CAS  Google Scholar 

  27. Chen,Y.-P., O'Toole,T. E., Ylanne,J., Rosa,J.-P. & Ginsberg,M. H. A point mutation in the integrin β3 tail (S752-P) impairs bidirectional signaling through αIIbβ3 (Platelet glycoprotein IIb-IIIa). Blood 84, 1857–1865 (1994).

    CAS  PubMed  Google Scholar 

  28. Ylanne,J. et al. Distinct functions of integrin α and β subunit tails in cell spreading and formation of focal adhesions. J. Cell Biol. 122, 223–233 (1993).

    Article  CAS  Google Scholar 

  29. Gao,J., Zoller,K. E., Ginsberg,M. H., Brugge,J. S. & Shattil,S. J. Regulation of the pp72syk protein tyrosine kinase by platelet integrin alpha IIb beta 3. EMBO J. 16, 6414–6425 (1997).

    Article  CAS  Google Scholar 

  30. Mazaki,Y., Uchida,H., Hino,O., Hashmoto,S. & Sabe,H. Paxillin isoforms in mouse. J. Biol. Chem. 273, 22435–22441 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Salgia and J. Griffin for the gift of vectors encoding paxillin, and S. Shattil for critical review of the manuscript. This work was supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Ginsberg.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Thomas, S., Woodside, D. et al. Binding of paxillin to α4 integrins modifies integrin-dependent biological responses. Nature 402, 676–681 (1999). https://doi.org/10.1038/45264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45264

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing