Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A plant regulator controlling development of symbiotic root nodules

Abstract

Symbiotic nitrogen-fixing root nodules on legumes are founded by root cortical cells that de-differentiate and restart cell division to establish nodule primordia. Bacterial microsymbionts invade these primordia through infection threads laid down by the plant and, after endocytosis, membrane-enclosed bacteroids occupy cells in the nitrogen-fixing tissue of functional nodules. The bacteria excrete lipochitin oligosaccharides1,2, triggering a developmental process that is controlled by the plant and can be suppressed. Nodule inception initially relies on cell competence in a narrow infection zone located just behind the growing root tip. Older nodules then regulate the number of nodules on a root system by suppressing the development of nodule primordia3. To identify the regulatory components that act early in nodule induction, we characterized a transposon-tagged Lotus japonicus mutant, nin (for nodule inception), arrested at the stage of bacterial recognition. We show that nin is required for the formation of infection threads and the initiation of primordia. NIN protein has regional similarity to transcription factors, and the predicted DNA-binding/dimerization domain identifies and typifies a consensus motif conserved in plant proteins with a function in nitrogen-controlled development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The phenotype of nin non-nodulating mutants.
Figure 2: Structure of the Nin gene and the allelic series derived by Ac transposition.
Figure 3: Amino-acid sequence and domains of NIN protein.
Figure 4: Expression of Nin during root-nodule development.
Figure 5: In situ localization of the Nin transcripts during nodule development.

Similar content being viewed by others

References

  1. Truchet,G. et al. Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351, 670–673 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Spaink,K. et al. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354, 125–130 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Caetano-Anollés,G. & Gresshoff,P. M. Plant genetic control of nodulation. Annu. Rev. Microbiol. 45, 345–382 (1991).

    Article  Google Scholar 

  4. Handberg,K. & Stougaard,J. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J. 2, 487–496 (1992).

    Article  Google Scholar 

  5. Spaink,H. P., Kondorosi,A. & Hooykaas,P. J. J. (eds) The Rhizobiaceae (Kluwer, Dordrecht, 1998).

    Book  Google Scholar 

  6. Long,S. R. Rhizobium symbiosis: Nod factors in perspective. Plant Cell 8, 1885–1898 (1996).

    Article  CAS  Google Scholar 

  7. López-Lara,I. M. et al. Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Mol. Microbiol. 15, 627–638 (1995).

    Article  Google Scholar 

  8. Landschulz,W. H., Johnson,P. F. & McKnight,S. L. The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Ferré-D'Amaré,A. R., Prendergast,G. C., Ziff,E. B. & Burley,S. K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363, 38–45 (1993).

    Article  ADS  Google Scholar 

  10. Puyet,A., Ibanez,A. M. & Espinosa,M. Characterisation of the Streptococcus pneumoniae maltosaccharide MalR, a member of the LacI-GalR family of repressors displaying distinctive genetic features. J. Biol. Chem. 268, 25402–25408 (1993).

    CAS  PubMed  Google Scholar 

  11. Silver,P. A. How proteins enter the nucleus. Cell 64, 489–497 (1991).

    Article  CAS  Google Scholar 

  12. Plano,G. V. & Winkler,H. H. Identification and initial topological analysis of the Rickettsia prowazekii ATP/ADP translocase. J. Bacteriol. 173, 3389–3396 (1991).

    Article  CAS  Google Scholar 

  13. Lehmbeck,J. et al. Sequence of two genes in pea chloroplast DNA coding for 84 and 82 kD polypeptides of the photosystem I complex. Plant Mol. Biol. 7, 3–10 (1986).

    Article  CAS  Google Scholar 

  14. Ferris,P. J. & Goodenough,U. W. Mating type in Chlamydomonas is specified by mid, the Minus-dominance gene. Genetics 146, 859–869 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferris,P. J., Pavlovic,C., Fabry,S. & Goodenough,U. W. Rapid evolution of sex-related genes in Chlamydomonas. Proc. Natl Acad. Sci. USA 94, 8634–8639 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Beck,C. F. & Haring,M. A. Gametic differentiation of Chlamydomonas. Int. Rev. Cytol. 168, 259–302 (1996).

    Article  CAS  Google Scholar 

  17. Yokoyama,C. et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75, 187–197 (1993).

    Article  CAS  Google Scholar 

  18. Brown,M. S. & Goldstein,J. L. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    Article  CAS  Google Scholar 

  19. Sakai,J. et al. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell 2, 505–514 (1998).

    Article  CAS  Google Scholar 

  20. Schroeter,E. H., Kisslinger,J. A. & Kopan,R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Thykjaer,T., Stiller,J., Handberg,K., Jones,J. & Stougaard,J. The maize transposable element Ac is mobile in the legume Lotus japonicus. Plant Mol. Biol. 27, 981–993 (1995).

    Article  CAS  Google Scholar 

  22. Schauser,L. et al. Symbiotic mutants deficient in nodule establishment identified after T-DNA mutagenesis of Lotus japonicus. Mol. Gen. Genet. 259, 414–423 (1998).

    Article  CAS  Google Scholar 

  23. Sullivan,J. T. et al. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc. Natl Acad. Sci. USA 92, 8985–8989 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Boivin,C. et al. Rhizobium meliloti genes encoding catabolism of trigonelline are induced under symbiotic conditions. Plant Cell 2, 1157–1170 (1990).

    Article  CAS  Google Scholar 

  25. Earp,D. J., Lowe,B. & Baker,B. Amplification of genomic sequences flanking transposable elements in host and heterologous plants: a tool for transposon tagging and genome characterization. Nucleic Acids Res. 18, 3271–3279 (1990).

    Article  CAS  Google Scholar 

  26. Papadopoulou,K., Roussis,A. & Katinakis,P. Phaseolus ENOD40 is involved in symbiotic and non-symbiotic organogenetic processes: expression during nodule and lateral root development. Plant Mol. Biol. 30, 403–417 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Ronson for supplying the M. loti nodC mutant; H. Spaink for the purified M. loti lipochitin oligosaccharide; and A. Nielsen and S. Rye for assistance. This research was supported by the Danish Biotechnology Programme and the SJVF Whole Plant Physiology Initiative. J. Stiller was supported by the Danish Science Research Councils postdoc programme, and A.R. by the EU-TMR programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Stougaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schauser, L., Roussis, A., Stiller, J. et al. A plant regulator controlling development of symbiotic root nodules. Nature 402, 191–195 (1999). https://doi.org/10.1038/46058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46058

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing