Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology

Abstract

Comparative biology requires a firm phylogenetic foundation to uncover and understand patterns of diversification and evaluate hypotheses of the processes responsible for these patterns. In the angiosperms, studies of diversification in floral form1,2, stamen organization3, reproductive biology4, photosynthetic pathway5, nitrogen-fixing symbioses6 and life histories7 have relied on either explicit or implied phylogenetic trees. Furthermore, to understand the evolution of specific genes and gene families, evaluate the extent of conservation of plant genomes and make proper sense of the huge volume of molecular genetic data available for model organisms8 such as Arabidopsis, Antirrhinum, maize, rice and wheat, a phylogenetic perspective is necessary. Here we report the results of parsimony analyses of DNA sequences of the plastid genes rbcL and atpB and the nuclear 18S rDNA for 560 species of angiosperms and seven non-flowering seed plants and show a well-resolved and well-supported phylogenetic tree for the angiosperms for use in comparative biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of phylogenetic relationships for angiosperms inferred from analysis of rbcL, atpB and 18S rDNA sequences; the jackknife consensus tree (for groups receiving >50% support) is shown.

Similar content being viewed by others

References

  1. Endress,P. K. Floral structure and evolution of primitive angiosperms: recent advances. Plant Syst. Evol. 192, 79–97 (1994).

    Article  Google Scholar 

  2. Donoghue,M. J., Ree,R. H. & Baum,D. A. Phylogeny and the evolution of flower symmetry in the Asteridae. Trends Plant Science 3, 311–317 (1998).

    Article  Google Scholar 

  3. Ronse Decraene,L.-P. & Smets,E. The distribution and systematic relevance of the androecial characters oligomery and polymery in the Magnoliophytina. Nord. J. Bot. 7, 239–253 (1987).

    Article  Google Scholar 

  4. Weller,S. G., Donoghue,M. J. & Charlesworth,D. in Experimental and Molecular Approaches to Plant Biosystematics (eds Hoch, P. C. & Stephenson, A. G.) 355–382 (Missouri Botanical Garden, St. Louis, 1995).

    Google Scholar 

  5. Kellogg,E. A. in The Biology of C4 Photosynthesis (eds Sage, R. F. & Monson, R. K.) 411–444 (Academic Press, San Diego, 1998).

    Google Scholar 

  6. Soltis,D. E. et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl Acad. Sci. USA 92, 2647–2651 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dodd,M. E., Silvertown,J. & Chase,M. W. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53, 732–744 (1999).

    Article  PubMed  Google Scholar 

  8. Gale,M. D. & Devos,K. M. Plant comparative genetics after 10 years. Science 282, 656–658 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Chase,M. W. et al. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80, 528–580 (1993).

    Article  Google Scholar 

  10. Doyle,J. A., Donoghue,M. J. & Zimmer,E. A. Integration of morphological and ribosomal RNA data on the origin of angiosperms. Ann. Missouri Bot. Gard. 81, 419–450 (1994).

    Article  Google Scholar 

  11. Soltis,D. E. et al. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann. Missouri Bot. Gard. 84, 1–49 (1997).

    Article  Google Scholar 

  12. Nandi,W. I., Chase,M. W. & Endress,P. K. A combined cladistic analysis of angiosperms using rbcL and non-molecular data sets. Ann. Missouri Bot. Gard. 85, 137–212 (1998).

    Article  Google Scholar 

  13. Savolainen,V. et al. Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Syst. Biol. (in the press).

  14. Qiu,Y.-L. et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402, 404–407 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Felsenstein,J. The number of evolutionary trees. Syst. Zool. 27, 27–33 (1978).

    Article  Google Scholar 

  16. Rice,K. A., Donoghue,M. J. & Olmstead,R. G. Analyzing large data sets: rbcL 500 revisited. Syst. Biol. 46, 554–563 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Nixon,K. C., Davis,J. L. & Goloboff,P. A. Search strategies for large datasets: an example using rbcL. Am. J. Bot. 85, 148 (1998).

    Google Scholar 

  18. Soltis,D. E. et al. Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. Syst. Biol. 47, 32–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Chase,M. W. & Cox,A. V. Gene sequences, collaboration and analysis of large data sets. Australian Syst. bot. 11, 215–229 (1998).

    Article  Google Scholar 

  20. Hillis,D. M. Inferring complex phylogenies. Nature 383, 130 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Graybeal,A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Mathews,S. & Donoghue,M. J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286, 947–950 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Cronquist,A. An Integrated System of Classification of Flowering Plants (Columbia University Press, New York, 1981).

    Google Scholar 

  24. Takhtajan,A. Diversity and Classification of Flowering Plants (Columbia University Press, New York, 1997).

    Google Scholar 

  25. Chase,M. W. et al. Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification, in Proceedings of Monocots II: The Second International Symposium on the Comparative Biology of the Monocotyledons, Sydney, Australia, (eds Wilson, K. & Morrison, D.) (CSIRO Press, Sydney, in the press).

  26. Cronquist,A. The Evolution and Classification of Flowering Plants (The New York Botanical Garden, New York, 1988).

    Google Scholar 

  27. Takhtajan,A. Evolutionary Trends in Flowing Plants (Columbia University Press, New York, 1991).

    Google Scholar 

  28. Kramer,E. M., Dorit,R. L. & Irish,V. F. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149, 765–783 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Swofford,D. L. Phylogenetic Analysis Using Parsimony* (PAUP*), version 4.0. (Sinauer Associates, Sunderland, MA, 1998).

  30. Farris,J. S., Albert,V. A., Källersjö,M., Lipscomb,D. & Kluge,A. G. Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124 (1996).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela S. Soltis.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1070 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltis, P., Soltis, D. & Chase, M. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402, 402–404 (1999). https://doi.org/10.1038/46528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46528

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing