Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a HAP1–DNA complex reveals dramatically asymmetric DNA binding by a homodimeric protein

Abstract

HAP1 is a member of a family of fungal transcription factors that contain a Zn2Cys6 binuclear cluster domain and bind as homodimers to sequences containing two DNA half sites. We have determined the 2.5 Å crystal structure of HAP1 bound to a cognate upstream activation sequence from the CYC7 gene. The structure reveals that HAP1 is bound in a dramatically asymmetric manner to the DNA target. This asymmetry aligns the Zn2Cys6 domains in a tandem head-to-tail fashion to contact two DNA half sites, positions an N-terminal arm of one of the protein subunits to interact with the inter-half site base pairs in the DNA minor groove, and suggests a mechanism by which DNA-binding facilitates asymmetric dimerization by HAP1. Comparisons with the DNA complexes of the related GAL4, PPR1 and PUT3 proteins illustrate how a conserved protein domain can be reoriented to recognize DNA half sites of different polarities and how homodimeric proteins adopt dramatically asymmetric structures to recognize cognate DNA targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The HAP1 DNA Binding Domain, UASCYC7, and binding sites of various family members.
Figure 2: Overall structure of the HAP1–DNA, GAL4–DNA, PPR1–DNA and PUT3–DNA complexes.
Figure 3: Hydrophobic contacts mediated at the interface of the HAP1 dimer.
Figure 4: Protein–DNA contacts in the HAP1–DNA complex.
Figure 5: Mapping PC mutations onto the DNA-binding domain of HAP1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lalonde, B., Arcangioli, B. & Guarente, L. A single Saccharomyces Cerevisiae upstream activation site (UAS1) has two distinct regions essential for its activity Mol. Cell. Biol. 6, 4690 –4696 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pfeifer, K., Arcangioli, B. & Guarente, L. Yeast HAP1 activator competes with factor RC2 for binding for the upstream activation site UAS1 of the CYC1 gene. Cell 49, 9–18 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Pfeifer, K., Prezant, T. & Guarente, L. Yeast HAP1 activator binds two upstream activation sites of different sequence Cell 49, 19–27 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Zitomer, R.S. et al. Elements involved in oxygen regulation of the Saccharomyces cerevisiae CYC7 gene. Mol. Cell. Biol. 7, 2212–2220 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Winkler, H. et al. C0-ordinate control of synthesis of mitochondrial and non-mitochondrial hemoproteins: a binding site for the HAP1(CYP1) protein in the UAS region of the yeat catalase T gene (CTT1). EMBO J. 7, 1799–1804 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lodi, T. & Guiard, B. Complex transcriptional regulation of the Saccharomyces cerevisiae CYB2 gene encoding cytochrome b2: CYP1 (HAP1) activator binds to the CYB2 upstream activation site UAS1-B2. Mol. Cell. Biol. 11, 3762–3772 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pfeifer, K., Kim, K.S., Kogan, S. & Guarente, L. Functional dissection and sequence of yeast HAP1 activator. Nature 342, 200–203 (1989).

    Article  Google Scholar 

  8. Schjerling, P. & Holmberg, S. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Res. 24, 4599–4607 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gardner, K.H., Anderson, S.F. & Coleman, J.E. Solution structure of the Kluyveromyces lactis LAC9 Cd2Cys6 DNA-binding domain. Nature Struct. Biol. 2, 898–905 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Johnston, M. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol. Rev. 51, 458–476 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Marmorstein, R. & Harrison, S.C. Crystal structure of a PPR1-DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Devel. 8, 2504–12 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Liang, S.D., Marmorstein, R., Harrison, S.C. & Ptashne, M. DNA sequence preferences of GAL4 and PPR1: how a subset of Zn2Cys6 binuclear cluster proteins recognize DNA. Mol. Cell. Biol. 16, 3773–3780 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hellauer, K., Rochon, M.-H. & Turcotte, B. A novel DNA binding motif for yeast zinc cluster proteins: the Leu3p and Pdr3p transcriptional activators recognize everted repeats. Mol. Cell. Biol. 16, 6096–6102 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Swaminathan, K., Flynn, P., Reece, R.R. & Marmorstein, R. Crystal structure of a PUT3–DNA complex reveals a novel mechanism for DNA recognition by a protein containing a Zn2Cys6 binuclear cluster. Nature Struct. Biol. 4, 751–759 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Marmorstein, R., Carey, M., Ptashne, M. & Harrison, S.C. DNA recognition by GAL4: structure of a protein–DNA complex. Nature 356, 408–414 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, L. & Guarente, L. The yeast activator HAP1 — a GAL4 family member — binds DNA in a directly repeated orientation. Genes Devel. 8, 2110–2119 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Turcotte, B. & Guarente, L. HAP1 positive control mutants specific for one of two binding sites. Genes Devel. 6, 2001–2009 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Ellenberger, T.E., Brandl, C.J., Struhl, K. & Harrison, S.C. The GCN4 basic-region leucine zipper binds DNA as a dimer of uninterrupted α-helices: crystal structure of the protein–DNA complex. Cell 71, 1223–123– (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Cohen, C. & Parry, D.A. Alpha-helical coiled coils and bundles: how to design an alpha-helical protein. Proteins 7, 1–15 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. O'Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two stranded parallel coiled-coil. Science 254, 539–544 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, L. & Guarente, L. The C6 zinc cluster dictates asymmetric binding by HAP1. EMBO J. 15, 4676–4681 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baleja, J.D., Marmorstein, R., Harrison, S.C. & Wagner, G. Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae. Nature 356, 405–453 (1992).

    Article  Google Scholar 

  23. Kraulis, P.J., Raine, A.R.C., Gadhavi, P.L. & Laue, E.D. Structure of the DNA binding domain of zinc GAL4. Nature 356, 448–450 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Walters, K., Dayie, K.T., Reece, R.J., Ptashne, M. & Wagner, G. Structure and mobility of the PUT3 dimer: a DNA pincer. Nature Struct. Biol. 4, 744–750 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Creusot, F., Verdiere, J., Gaisne, M. & Slonimski, P.P. CTP1 (HAP1) regulation of oxygen-dependent gene expression in yeast. J. Mol. Biol. 204, 423–432 (1988).

    Article  Google Scholar 

  26. Timmerman, J. et al. 1H, 15N Resonance assignment and three-dimensional structure of CYP1 (HAP1) DNA-binding domain. J. Mol. Biol. 259, 792–804 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Ha, N., Hellaur, K. & Turcotte, B. Mutations in target DNA elements of yeast HAP1 modulates transcriptional activity without affecting DNA binding. Nucleic Acids Res. 24, 1453–1459 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Otting, G. et al. Protein–DNA contacts in the structure of a homeodomain–DNA complex determined by nuclear magnetic resonance spectroscopy in solution EMBO J. 9, 3085–3092 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kissinger, C., Liu, B., Martin-Blanco, E., Kornberg, T. & Pabo, C. Crystal Structure of an engrailed homeodomain–DNA complex at 2.8 Å resolution: a framework for understanding homeodomain–DNA interactions. Cell 63, 579–590 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Wolberger, C., Vershon, A., Liu, B., Johnson, A. & Pabo, C. Crystal stucture of a MATα2 homeodomain-operator complex suggests a general model for homeodomain–DNA interactions Cell 67, 517–528 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, K.-S. & Guarente, L. Mutations that alter transcriptional activation but not DNA binding in the zinc finger of yeast activator HAP1. Nature 343, 200–203 (1989).

    Article  Google Scholar 

  32. Lefstin, J., Thoma, J. & Yamamoto, K. Influence of a steroid receptor DNA-binding domain on transcriptional regulatory functions Genes Devel. 8, 2842–2856 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Reece, R.J. & Ptashne, M. Determinants of binding site specificity among yeast C6 zinc cluster proteins. Science 261, 909–911 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Prezant, T., Pfeifer, K. & Guarente, L. Organization of the regulatory region of the yeast CYC7 gene: Multiple factors are involved in regulation. Mol. Cell. Biol. 7, 3252–3259 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Towers, T., Luisi, B., Asianov, A. & Freeman, L. DNA target selectivity by the vitamin D3 receptor: mechanism of dimer binding to an asymmetric repeat element. Proc. Natl. Acad. Sc. USA 90, 6310–6314 (1993).

    Article  CAS  Google Scholar 

  36. Mader, S. et al. The patterns of binding of RAR, RXR and TR homo- and heterodimers to direct repeats are dictated by the binding specificities of the DNA binding domains EMBO J. 12, 5029–5041 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perlmann, T., Rangarajan, P., Umesono, K. & Evans, R. Determinants for selective RAR and TR recognition of direct repeat HREs. Gene. Dev. 7, 1411–1422 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Kurokawa, R. et al. Differential orientations of the DNA-binding domain and carboxy-terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers. Genes Devel. 7, 1423–1435 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  40. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988b).

  41. Kabsch, W. Automatic indexing of rotation diffraction patterns. J. Appl. Crystallogr. 21, 67–71 (1988a).

    Article  CAS  Google Scholar 

  42. King, D.A., Zhang, L., Guarente, L. & Marmorstein, R. Structure of a HAP1-18/DNA complex reveals that protein/DNA interactions can have direct allosteric effects on transcriptional activation. Nature Struct. Biol. 6, 22–27 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Brünger, A.T. X-PLOR 3.1, A system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  44. Brünger, A.T. The free R value: a novel statistical quantity assessing the accuracy of crystal structures. Nature 335, 472–474 (1992).

    Article  Google Scholar 

  45. Brünger, A.T. & Krukowski, A. Slow-cooling protocols for crystallographic refinment by simulated annealing. Acta Crystallogr. A46, 585–593 (1990).

    Article  Google Scholar 

  46. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  PubMed  Google Scholar 

  47. Kleywegt, G. & Brünger, A. Checking your imagination: Applications of the free R value Structure 4, 897–904 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Read, R. Improved Fourier coefficients for maps using phases from partial structures with errors Acta. Crystallgor. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  49. Jones, T.A. A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  50. Rice, L.M. & Brünger, A.T. Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19, 277–290 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Jiang, J.S. & Brünger, A.T. Protein hydration observed by X-ray diffraction: solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243, 100–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Hodel, A., Kim, S.-H. & Brünger, A.T. Model bias in macromolecular crystal structures. Acta Crystallogr. A48, 851–858 (1992).

    Article  CAS  Google Scholar 

  53. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallgr. 24, 946–950 (1991).

    Article  Google Scholar 

  54. Merritt, E.A. & Murphy, M.E.P. RASTER3D version 2.0: a program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

  55. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Lukens, T. Stams, C. Lesburg, X. Li, Y. Mo, S. Benson, R. Venkataramani, and K. Swaminathan for useful discussions. This work was supported by a grant form the NIH and a junior faculty research award from the ACS to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronen Marmorstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, D., Zhang, L., Guarente, L. et al. Structure of a HAP1–DNA complex reveals dramatically asymmetric DNA binding by a homodimeric protein. Nat Struct Mol Biol 6, 64–71 (1999). https://doi.org/10.1038/4940

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing