Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Requirement for multiple lymphocyte subsets in protection by a live attenuated vaccine against retroviral infection

Abstract

Infection by live attenuated retroviruses provides excellent protection from challenge with pathogenic viruses in several animal models, but little is known about which immune effectors are necessary for protection. We examined this using adoptive transfer experiments in the Friend virus mouse model. Transfers of immune spleen cells into naive mice conferred complete protection, and transfers of purified lymphocyte subsets demonstrated that this effect required complex immune responses involving CD4+ and CD8+ T cells and also B cells. In addition, passive immunization experiments demonstrated that antibodies alone reduced virus loads but did not prevent infection. These findings may have implications for retroviral vaccine design in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Titration of spleen cells from F–MuLV–vaccinated mice in naive recipients.
Figure 2: Plasma viremia in FV–challenged recipients that received different lymphocyte subsets.
Figure 3: Transfer of enriched lymphocyte subsets from F–MuLV–vaccinated mice.
Figure 4: Transfer of dual subsets of immune spleen cells.
Figure 5: Levels of antibody and of spleen infection in F–MuLV–vaccinated mice compared with those in passively immunized mice.

Similar content being viewed by others

References

  1. Earl, P.L. et al. T–lymphocyte priming and protection against Friend leukemia by vaccinia–retrovirus env gene recombinant. Science 234, 728–731 (1986).

    Article  CAS  Google Scholar 

  2. Daniel, M.D., Kirchhoff, F., Czajak, S.C., Sehgal, P.K., Desrosiers, R.C. Protective effects of a live attenuated SIV with a deletion in the nef gene. Science 258, 1938–1941 (1992).

    Article  CAS  Google Scholar 

  3. Almond, N. et al. Protection by attenuated simian immunodeficiency virus in macaques against challenge with virus–infected cells. Lancet 345, 1342–1344 (1995).

    Article  CAS  Google Scholar 

  4. Stahl–Hennig, C. et al. Attenuated SIV imparts immunity to challenge with pathogenic spleen–derived SIV but cannot prevent repair of the nef deletion. Immunol. Lett. 51, 129–135 (1996).

    Article  Google Scholar 

  5. Ruprecht, R.M. et al. Vaccination with a live retrovirus: the nature of the protective immune response. Proc. Natl. Acad. Sci. USA 87, 5558–5562 (1990).

    Article  CAS  Google Scholar 

  6. Desrosiers, R.C. Prospects for live attenuated HIV. Nature Med. 4, 982 (1998).

    Article  CAS  Google Scholar 

  7. Baba, T.W. et al. Pathogenicity of live, attenuated SIV after mucosal infection of neonatal macaques. Science 267, 1820– 1825 (1995).

    Article  CAS  Google Scholar 

  8. Cohen, J. Weakened SIV vaccine still kills. Science 278, 24–25 (1997).

    Article  CAS  Google Scholar 

  9. Dittmer, U. et al. Cellular immune response of rhesus monkeys infected with a partially attenuated nef deletion mutant of the simian immunodeficiency virus. Virology 212, 392–397 (1995).

    Article  CAS  Google Scholar 

  10. Dittmer, U. et al. Specificity of helper T cells generated from macaques infected with attenuated Simian Immunodeficiency Virus. J. Gen. Virol. 79, 1801–1807 (1998).

    Article  CAS  Google Scholar 

  11. Xu, X.N. et al. Evasion of cytotoxic T lymphocyte (CTL) responses by nef–dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus–infected cells. J. Exp. Med. 186, 7– 16 (1997).

    Article  CAS  Google Scholar 

  12. Johnson, R.P. et al. Induction of vigorous cytotoxic T–lymphocyte responses by live attenuated simian immunodeficiency virus. J. Virol. 71, 7711–7718 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Norley, S., Beer, B., Binninger–Schinzel, D., Cosma, C. & Kurth, R. Protection from pathogenic SIVmac challenge following short–term infection with a nef–deficient attenuated virus. Virology 219, 195– 205 (1996).

    Article  CAS  Google Scholar 

  14. Cole, K.S. et al. Evolution of envelope–specific antibody responses in monkeys experimentally infected or immunized with simian immunodeficiency virus and its association with the development of protective immunity. J. Virol. 71, 5069–5079 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson, R.P. & Desrosiers, R.C. Protective immunity induced by live attenuated simian immunodeficiency virus. Curr. Opin. Immunol. 10, 436–443 (1998).

    Article  CAS  Google Scholar 

  16. Heilman, C.A. & Baltimore, D. HIV vaccines—where are we going? Nature Med. 4, 532– 534 (1998).

    Article  CAS  Google Scholar 

  17. Burton, D.R. & Moore, J.P. Why do we not have an HIV vaccine and how can we make one? Nature Med. 4, 495–498 (1998).

    Article  CAS  Google Scholar 

  18. Morrison, R.P., Nishio, J. & Chesebro, B. Influence of the murine MHC (H–2) on Friend leukemia virus–induced immunosuppression. J. Exp. Med. 163, 301–314 (1986).

    Article  CAS  Google Scholar 

  19. Ceglowski, W.S. & Friedman, H. Immunosuppression by leukemia viruses. I. Effect of Friend disease virus on cellular and humoral hemolysin responses of mice to a primary immunization with sheep erythrocytes. J. Immunol. 101, 594–604 (1968).

    CAS  PubMed  Google Scholar 

  20. Jones, S.M., Moors, M.A., Ryan, Q., Klyczek, K.K. & Blank, K.J. Altered Macrophage Antigen–Presenting Cell Function Following Friend Leukemia Virus Infection. Viral Immunol. 5, 201–211 (1992).

    Article  CAS  Google Scholar 

  21. Kabat, D. Molecular biology of Friend viral erythroleukemia. Curr. Top. Microbiol. Immunol. 148, 1–42 (1989).

    CAS  PubMed  Google Scholar 

  22. Hoatlin, M.E. & Kabat, D. Host–range control of a retroviral disease: Friend erythroleukemia. Trends Microbiol. 3, 51–57 (1995).

    Article  CAS  Google Scholar 

  23. Li, J.–P., D'Andrea, A.D., Lodish, H.F. & Baltimore, D. Activation of cell growth by binding of Friend spleen focus–forming virus gp55 glycoprotein to the erythropoietin receptor. Nature 343, 762–764 (1990).

    Article  CAS  Google Scholar 

  24. Hasenkrug, K.J., Brooks, D. M., Robertson, M. N., Srinivas, R.V. & & Chesebro, B. Immunoprotective determinants in Friend Murine Leukemia Virus envelope protein. Virology 248, 66–73 (1998).

    Article  CAS  Google Scholar 

  25. Wendling, F. & Tambourin, P.E. Oncogenicity of Friend–virus–infected cells: determination of origin of spleen colonies by the H–2 antigens as genetic markers. Int. J. Cancer 22, 479–86 (1978).

    Article  CAS  Google Scholar 

  26. Lilly, F. Susceptibility to two strains of Friend leukemia virus in mice. Science 155, 461–462 (1967).

    Article  CAS  Google Scholar 

  27. Dittmer, U., Brooks, D.M. & Hasenkrug, K.J. Characterization of a live–attenuated retroviral vaccine demonstrates protection via immune mechanisms. J. Virol. 72, 6554–6558 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pincus, T., Rowe, W.P. & Lilly, F. A major genetic locus affecting resistance to infection with murine leukemia viruses. II. Apparent identity to a major locus described for resistance to Friend murine leukemia virus. J. Exp. Med. 133, 1234–1241 (1971).

    Article  CAS  Google Scholar 

  29. Jolicoeur, P. The Fv–1 gene of the mouse and its control of murine leukemia virus replication. Curr. Top. Microbiol. Immunol. 86, 67–122 (1979).

    Article  CAS  Google Scholar 

  30. Britt, W.J. & Chesebro, B. Use of monoclonal anti–gp70 antibodies to mimic the effects of the Rfv–3 gene in mice with Friend virus–induced leukemia. J. Immunol. 130, 2363–2367 (1983).

    CAS  PubMed  Google Scholar 

  31. Hasenkrug, K.J., Brooks, D.M. & Chesebro, B. Passive immunotherapy for retroviral disease: influence of major histocompatibility complex type and T–cell responsiveness. Proc. Natl. Acad. Sci. USA 92, 10492– 10495 (1995).

    Article  CAS  Google Scholar 

  32. Hasenkrug, K.J., Brooks, D.M. & Dittmer, U. Critical role for CD4+ T cells in controlling retrovirus replication and spread in persistently infected mice. J. Virol. 72, 6559–6564 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Perry, L.L. & Lodmell, D.L. Role of CD4+ and CD8+ T cells in murine resistance to street rabies virus. J. Virol. 65, 3429–3434 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lodmell, D.L. & Ewalt, L.C. Pathogenesis of street rabies virus infections in resistant and susceptible strains of mice. J. Virol. 55, 788–795 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Weidt, G., Deppert, W., Buchhop, S., Dralle, H. & Lehmann–Grube, F. Antiviral protective immunity induced by major histocompatibility complex class I molecule–restricted viral T–lymphocyte epitopes inserted in various positions in immunologically self and nonself proteins. J. Virol. 69, 2654– 2658 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Oldstone, M.B. et al. Vaccination to prevent persistent viral infection. J. Virol. 67, 4372–4378 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hom, R.C., Finberg, R.W., Mullaney, S. & Ruprecht, R.M. Protective cellular retroviral immunity requires both CD4+ and CD8+ immune T cells. J. Virol. 65, 220– 224 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Walker, C.M. & Levy, J.A. A diffusable lymphokine produced by CD8+ T lymphocytes suppresses HIV replication. Immunology 66, 628–630 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mackewicz, C. & Levy, J.A. CD8+ cell anti–HIV activity: Nonlytic suppression of virus replication. AIDS Res. Hum. Retroviruses 8, 1039–1050 (1992).

    Article  CAS  Google Scholar 

  40. Furci, L. et al. Antigen–driven C–C chemokine–mediated HIV–1 suppression by CD4+ T cells from exposed uninfected individuals expressing the wild–type CCR–5 allele. J. Exp. Med. 186, 455–460 (1997).

    Article  CAS  Google Scholar 

  41. Salk, J., Bretscher, P.A., Salk, P.L., Clerici, M. & Shearer, G.M. A strategy for prophylactic vaccination against HIV. Science 260, 1270– 1272 (1993).

    Article  CAS  Google Scholar 

  42. Emini, E.A. et al. Prevention of HIV–1 infection in chimpanzees by gp120 V3 domain–specific monoclonal antibody. Nature 355, 728–730 (1992).

    Article  CAS  Google Scholar 

  43. Gauduin, M.C. et al. Passive immunization with a human monoclonal antibody protects hu–PBL–SCID mice against challenge by primary isolates of HIV–1. Nature Med. 3, 1389–93 (1997).

    Article  CAS  Google Scholar 

  44. Letvin, N.L. Progress in the development of an HIV–1 vaccine. Science 280, 1875–80 (1998).

    Article  CAS  Google Scholar 

  45. Letvin, N.L. et al. Potent, protective anti–HIV immune responses generated by bimodal HIV envelope DNA plus protein vaccination. Proc. Natl. Acad. Sci. USA 94, 9378–9383 (1997).

    Article  CAS  Google Scholar 

  46. Heeney, J.L. et al. β–chemokines and neutralizing antibody titers correlate with sterilizing immunity generated in HIV–1 vaccinated macaques. Proc. Natl. Acad. Sci. USA 95, 10803– 10808 (1998).

    Article  CAS  Google Scholar 

  47. Chesebro, B. et al. Characterization of monoclonal antibodies reactive with murine leukemia viruses: use in analysis of strains of Friend MCF and Friend ecotropic murine leukemia virus. Virology 127, 134–148 (1983).

    Article  CAS  Google Scholar 

  48. Sitbon, M., Nishio, J., Wehrly, K., Lodmell, D. & Chesebro, B. Use of a focal immunofluorescence assay on live cells for quantitation of retroviruses: distinction of host range classes in virus mixtures and biological cloning of dual–tropic murine leukemia viruses. Virology 141, 110–108 (1985).

    Article  CAS  Google Scholar 

  49. Morrison, R.P. et al. Different H–2 subregions influence immunization against retrovirus and immunosuppression. Nature 329, 729–732 (1987).

    Article  CAS  Google Scholar 

  50. Chesebro, B. et al. Characterization of mouse monoclonal antibodies specific for Friend murine leukemia virus–induced erythroleukemia cells: Friend–specific and FMR–specific antigens. Virology 112, 131–144 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

U.D. is supported by a fellowship from the 'Deutsche Forschungsgemeinschaft'.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittmer, U., Brooks, D. & Hasenkrug, K. Requirement for multiple lymphocyte subsets in protection by a live attenuated vaccine against retroviral infection. Nat Med 5, 189–193 (1999). https://doi.org/10.1038/5550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5550

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing