Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activating SRC mutation in a subset of advanced human colon cancers

Abstract

The discovery of Rous sarcoma virus (RSV) led to the identification of cellular Src (c–Src), a non-receptor tyrosine kinase, which has since been implicated in the development of numerous human cancers1,2,3,4. c-Src has been found to be highly activated in colon cancers, particularly in those metastatic to the liver5,6,7,8,9,10,11. Studies of the mechanism of c-Src regulation have suggested that c-Src kinase activity is downregulated by phosphorylation of a critical carboxy-terminal tyrosine (Tyr 530 in human c-Src, equivalent to Tyr 527 in chicken Src) and have implied the existence of activating mutations in this C-terminal regulatory region12,13,14,15,16,17,18. We report here the identification of a truncating mutation in SRC at codon 531 in 12% of cases of advanced human colon cancer tested and demonstrate that the mutation is activating, transforming, tumorigenic and promotes metastasis. These results provide, for the first time, genetic evidence that activating SRC mutations may have a role in the malignant progression of human colon cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of SRC 531 mutation in human tumours.
Figure 2: Confirmation of SRC 531 mutation in tumours by mutant allele–specific PCR.
Figure 3: Kinase activity and phosphotyrosine analysis of normal and mutant Src proteins.
Figure 4: Analysis of fibroblasts transfected with the Src 531 expression construct for cellular transformation and metastatic potential.

Similar content being viewed by others

References

  1. Stehelin, D., Varmus, H.E., Bishop, J.M. & Vogt, P.K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170– 173 (1976).

    Article  CAS  Google Scholar 

  2. Brugge, J.S. & Erikson, R.L. Identification of a transformation–specific antigen induced by an avian sarcoma virus. Nature 269 , 346–348 (1977).

    Article  CAS  Google Scholar 

  3. Jove, R. & Hanafusa, H. Cell transformation by the viral src oncogene. Annu. Rev. Cell Biol. 3, 31 –56 (1987).

    Article  CAS  Google Scholar 

  4. Thomas, S.M. & Brugge, J.S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609 (1997).

    Article  CAS  Google Scholar 

  5. Rosen, N. et al. Analysis of pp60c–src protein kinase activity in human tumor cell lines and tissues. J. Biol. Chem. 261, 13754–13759 (1986).

    CAS  PubMed  Google Scholar 

  6. Bolen, J., Veillette, A., Schwartz, A., DeSeau, V. & Rosen, N. Activation of pp60c–src protein kinase activity in human colon carcinoma. Proc. Natl Acad. Sci. USA 84, 2251–2255 ( 1987).

    Article  CAS  Google Scholar 

  7. Cartwright, C., Kamps, M., Meisler, A., Pipas, J. & Eckhart, W. pp60c–src activation in human colon carcinoma. J. Clin. Invest. 83, 2025– 2033 (1989).

    Article  CAS  Google Scholar 

  8. Talamonti, M.A., Roh, M.S., Curley, S.A. & Gallick, G.E. Increase in activity and level of pp60c–src in progressive stages of human colorectal cancer. J. Clin. Invest. 91, 53– 60 (1991).

    Article  Google Scholar 

  9. Cartwright, C., Coad, C. & Egbert, B. Elevated c–Src tyrosine kinase activity in premalignant epithelia of ulcerative colitis. J. Clin. Invest. 93 , 509–515 (1994).

    Article  CAS  Google Scholar 

  10. Termuhlen, P.M., Curley, S.A., Talamonti, M.S., Saboorian, M.H. & Gallick, G.E. Site–specific differences in pp60c–src activity in human colorectal metastases. J. Surg. Res. 54, 293–298 ( 1993).

    Article  CAS  Google Scholar 

  11. Mao, W. et al. Activation of c–Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 15, 3083–3090 (1997).

    Article  CAS  Google Scholar 

  12. Cooper, J., Gould, K., Cartwright, C. & Hunter, T. Tyr527 is phosphorylated in pp60c–src: implications for regulation. Science 231, 1431–1434 (1986).

    Article  CAS  Google Scholar 

  13. Cartwright, C., Eckhart, W., Simon, S. & Kaplan, P. Cell transformation by pp60c–src mutated in the carboxy–terminal regulatory domain. Cell 49, 83–91 (1987).

    Article  CAS  Google Scholar 

  14. Kmiecik, T. & Shalloway, D. Activation and suppression of pp60c–src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49, 65– 73 (1987).

    Article  CAS  Google Scholar 

  15. Piwnica–Worms, H., Saunders, K.B., Roberts, T.M., Smith, A.E. & Cheng, S.H. Tyrosine phosphorylation regulates the biochemical and biological properties of pp60c–src. Cell 49, 75–82 ( 1987).

    Article  Google Scholar 

  16. Reynolds, A.B. et al. Activation of the oncogenic potential of the avian cellular src protein by specific structural alteration of the carboxy terminus. EMBO J. 6, 2359–2364 ( 1987).

    Article  CAS  Google Scholar 

  17. Jove, R., Hanafusa, T., Hamaguchi, M. & Hanafusa, H. In vivo phosphorylation states and kinase activities of transforming p60c–src mutants. Oncogene Res. 5, 49–60 (1989).

    CAS  PubMed  Google Scholar 

  18. Bjorge, J. et al. Characterization of two activated mutants of human pp60c–src that escape c–Src kinase regulation by distinct mechanisms. J. Biol. Chem. 270, 24222–24228 (1995).

    Article  CAS  Google Scholar 

  19. Guo, Z., Liu, Q. & Smith, L.M. Enhanced discrimination of single nucleotide polymorphisms by artificial mismatch hybridization. Nature Biotechnol. 15, 331–335 (1997).

    Article  CAS  Google Scholar 

  20. Cooper, J.A. & Howell, B. The when and how of src regulation. Cell 73, 1051–1054 (1993).

    Article  CAS  Google Scholar 

  21. Tanaka, A. et al. DNA sequence encoding the amino–terminal region of the human c–src protein: implications of sequence divergence among src–type kinase oncogenes. Mol. Cell. Biol. 7, 1978 –1983 (1987).

    Article  CAS  Google Scholar 

  22. Tanaka, A. & Fujita, D.J. Expression of a molecularly cloned human c–src oncogene by using a replication–competent retroviral vector. Mol. Cell. Biol. 6, 3900– 3909 (1986).

    Article  CAS  Google Scholar 

  23. Jove, R., Kornbluth, S. & Hanafusa, H. Enzymatically inactive p60c–src mutant with altered ATP–binding site is fully phosphorylated in its carboxy–terminal regulatory region. Cell 50, 937– 943 (1987).

    Article  CAS  Google Scholar 

  24. Xu, W., Harrison, S.C. & Eck, M.J. Three–dimensional structure of the tyrosine kinase c–Src [see comments]. Nature 385, 595–602 (1997).

    Article  CAS  Google Scholar 

  25. Snyder, M.A., Bishop, J.M., Colby, W.W. & Levinson, A.D. Phosphorylation of tyrosine–416 is not required for the transforming properties and kinase activity of pp60v–src. Cell 32, 891–901 (1983).

    Article  CAS  Google Scholar 

  26. Hamaguchi, M. et al. Augmentation of metalloproteinase (gelatinase) activity secreted from Rous sarcoma virus–infected cells correlates with transforming activity of src. Oncogene 10, 1037– 1043 (1995).

    CAS  PubMed  Google Scholar 

  27. Egan, S. et al. Transformation by oncogenes encoding protein kinases induces the metastatic phenotype. Science 238, 202 –205 (1987).

    Article  CAS  Google Scholar 

  28. Tatsuka, M. et al. Different metastatic potentials of ras– and src–transformed BALB/c 3T3 A31 variant cells. Mol. Carcinog. 15, 300–308 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Agrawal and S. Sebti for helpful discussions; M. Wloch for his assistance in procurement of human tumours; K. Cohn for his contribution of human tumour samples for analysis; C. Newton for tail vein injections; and Moffitt Cancer Center's Molecular Imaging, Pathology, and Molecular Biology core facilities. This work was supported by grants from the National Institutes of Health CA65512 and the American Cancer Society RPG MGO–97551 (T.J.Y.) and CA55652 (R.J.) and by the NCIC/Canadian Breast Cancer Research Initiative and the Medical Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Yeatman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irby, R., Mao, W., Coppola, D. et al. Activating SRC mutation in a subset of advanced human colon cancers . Nat Genet 21, 187–190 (1999). https://doi.org/10.1038/5971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5971

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing