Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technology Review
  • Published:

‘Shocking’ developments in chick embryology: electroporation and in ovo gene expression

Abstract

Efficient gene transfer by electroporation of chick embryos in ovo has allowed the development of new approaches to the analysis of gene regulation, function and expression, creating an exciting opportunity to build upon the classical manipulative advantages of the chick embryonic system. This method is applicable to other vertebrate embryos and is an important tool with which to address cell and developmental biology questions. Here we describe the technical aspects of in ovo electroporation, its different applications and future perspectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electroporation-mediated gene expression in cultured chick and mouse embryos.
Figure 2: Electroporation into different chick tissues.
Figure 3: Spatially restricted expression in chick embryos, using region-specific enhancers from different species.
Figure 4: Application of electroporation to analysis of gene regulation.

References

  1. Le Douarin, N. A biological cell labeling technique and its used in experimental embryology. Dev. Biol. 30, 217–222 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Couly, G. F., Coltey, P. M. & Le Douarin, N. M. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114, 1–15 (1992).

    CAS  PubMed  Google Scholar 

  3. Couly, G. F., Coltey, P. M. & Le Douarin, N. M. The triple origin of skull in higher vertebrates — a study in quail-chick chimeras. Development 117, 409–429 (1993).

    CAS  PubMed  Google Scholar 

  4. Bronner-Fraser, M. & Fraser, S. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335, 161–164 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Fraser, S., Keynes, R. & Lumsden, A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344, 431–435 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Krull, C. E., Collazo, A., Fraser, S. E. & Bronner-Fraser, M. Segmental migration of trunk neural crest: time lapse analysis reveals a role for PNA-binding molecules. Development 121, 3733–3743 (1995).

    CAS  PubMed  Google Scholar 

  7. Kulesa, P. Neural crest cell dynamics revealed by time-lapse video microscopy of whole chick explant cultures. Dev. Biol. 204, 327–344 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Petropoulos, C. & Hughes, S. Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J. Virol. 65, 3728– 3737 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Petropoulos, C., Payne, W., Salter, D. & Hughes, S. Using avian retroviral vectors for gene transfer. J. Virol. 66, 3391–3397 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shillito, R., Saul, M., Paszkowski, J., Muller, M. & Potrykus, I. High efficiency direct gene transfer to plants. Bio/Technol. 3, 1099–1103 (1985).

    Google Scholar 

  11. Andreason, G. & Evans, G. Induction and expression of DNA molecules in eukaryotic cells by electroporation. Biotechniques 6, 650–660 (1988).

    CAS  PubMed  Google Scholar 

  12. Takahashi, M. et al. Gene transfer into human leukemia cell lines by electroporation: experience with exponentially decaying and square wave pulse. Leukemia Res. 15, 507–513 (1991).

    Article  CAS  Google Scholar 

  13. Muramatsu, T., Mizutani, Y., Ohmori, Y. & Okumura, J.-i. Comparison of three non-viral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem. Biophys. Res. Comum. 230, 376–380 (1997).

    Article  CAS  Google Scholar 

  14. Nishi, T. et al. High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res. 56, 1050–1055 (1996).

    CAS  PubMed  Google Scholar 

  15. Momose, T. et al. Efficient targeting of gene expression in chick embryos by microelectroporation. Dev. Growth Differ. 41, 335–344 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Suemori, H. et al. A mouse embryonic stem cell line showing pluripotency of differentiation in early embryos and ubiquitous β-galactosidase expression. Cell Differ. Dev. 29, 181–186 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Gould, A., Itasaki, N. & Krumlauf, R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 21, 39–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Funahashi, J.-i. et al. Role of Pax5 in the regulation of a mid-hindbrain organizer’s activity. Dev. Growth Differ. 41, 59– 72 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Akamatsu, W. et al. Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. Proc. Natl Acad. Sci. USA 96, 9885–9890 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ogino, H. & Yasuda, K. Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science 280, 115–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Takeuchi, J. K. et al. Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds. Nature 398, 810– 814 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Manzanares, M. et al. Conserved and distinct roles of kreisler in regulation of paralogous Hoxa3 and Hoxb3 genes. Development 126, 759–769 (1999).

    CAS  PubMed  Google Scholar 

  23. Morrison, A. et al. Comparative analysis of Hoxb-4 regulation in transgenic mice. Mech. Dev. 53, 47– 59 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Morrison, A., Ariza-McNaughton, L., Gould, A., Featherstone, M. & Krumlauf, R. HOXD4 and regulation of the group 4 paralog genes. Development 124, 3135–3146 (1997).

    CAS  PubMed  Google Scholar 

  25. Whiting, J. et al. Multiple spatially specific enhancers are required to reconstruct the pattern of Hox-2.6 gene expression. Genes Dev. 5, 2048–2059 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Aparicio, S. et al. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish Fugu rubripes. Proc. Natl Acad. Sci. USA 92, 1684–1688 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pöpperl, H. . et al. Segmental expression of Hoxb1 is controlled by a highly conserved autoregulatory loop dependent upon exd/Pbx. Cell 81, 1031–1042 (1995).

    Article  PubMed  Google Scholar 

  28. Studer, M., Pöpperl, H., Marshall, H., Kuroiwa, A. & Krumlauf, R. Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265, 1728–1732 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Aihara, H. & Miyazaki, J.-i. Gene transfer into muscle by electroporation in vivo. Nature Biotech. 16, 867–870 (1998).

    Article  CAS  Google Scholar 

  30. Rols, M.-P. et al. In vivo electrically mediated protein and gene transfer in murine melanoma. Nature Biotech. 16, 168–171 (1998).

    Article  CAS  Google Scholar 

  31. Sundin, O. & Eichele, G. A homeo domain protein reveals the metameric nature of the developing chick hindbrain. Genes Dev. 4, 1267–1276 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Maden, M. et al. Retinoic acid-binding protein and homeobox expression in rhombomeres of the chick embryo. Development 111, 35–44 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Manzanares for constructing the Hoxa3 vectors and help in testing their activity; A. Morrison, S. Nonchev, H. Popperl, M. Studer and H. Marshall for the region-specific enhancer constructs; and K. Kusumi, T. Jinks and M. Martínez-Pastor for discussions and testing approaches for electroporation. N.I. thanks H. Nakamura, J.-i. Funahashi and N. Osumi for technical suggestions; and Y. Imada and Y. Hayakawa for technical support. S.B.-V. was supported by fellowships from the French Cancer Research Association (ASC) and EMBO; N.I. was supported by an HFSP fellowship and the MRC; R.K.’s research was funded by the MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robb Krumlauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itasaki, N., Bel-Vialar, S. & Krumlauf, R. ‘Shocking’ developments in chick embryology: electroporation and in ovo gene expression . Nat Cell Biol 1, E203–E207 (1999). https://doi.org/10.1038/70231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/70231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing