Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20

Abstract

The checkpoint protein Mad2 inhibits the activity of the anaphase promoting complex by sequestering Cdc20 until all chromosomes are aligned at the metaphase plate. We report the solution structure of human Mad2 and its interaction with Cdc20. Mad2 possesses a novel three-layered α/β fold with three α-helices packed between two β-sheets. Using deletion mutants we identified the minimal Mad2-binding region of human Cdc20 as a 40-residue segment immediately N-terminal to the WD40 repeats. Mutagenesis and NMR titration experiments show that a C-terminal flexible region of Mad2 is required for binding to Cdc20. Mad2 and Cdc20 form a tight 1:1 heterodimeric complex in which the C-terminal segment of Mad2 becomes folded. These results provide the first structural insight into mechanisms of the spindle assembly checkpoint.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mad2 possesses a novel α/β fold.
Figure 2: Secondary structure and sequence alignment of Mad2.
Figure 3: Interactions between Mad2 and Cdc20.
Figure 4: The Cdc20 binding surface of Mad2.
Figure 5: Cdc20 binding disrupts oligomerization of Mad2.
Figure 6: Hypothetical models for the stabilization of the Mad2–Cdc20 interaction by the spindle assembly checkpoint.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Nicklas, R.B., Ward, S.C. & Gorbsky, G.J. Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J. Cell. Biol. 130, 929–939 ( 1995).

    Article  CAS  Google Scholar 

  2. Murray, A.W. The genetics of cell cycle checkpoints. Curr. Opin. Genet. Dev. 5, 5–11 (1995 ).

    Article  CAS  Google Scholar 

  3. Hardwick, K.G. The spindle checkpoint. Trends Genet. 14, 1–4 (1998).

    Article  CAS  Google Scholar 

  4. Nicklas, R.B. How cells get the right chromosomes. Science 275, 632–637 (1997).

    Article  CAS  Google Scholar 

  5. Nasmyth, K. Separating sister chromatids. Trends Biochem. Sci. 24, 98–104 (1999).

    Article  CAS  Google Scholar 

  6. Hoyt, M.A., Totis, L. & Roberts, B.T.S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66 , 507–517 (1991).

    Article  CAS  Google Scholar 

  7. Li, R. & Murray, A.W. Feedback control of mitosis in budding yeast. Cell 66, 519– 531 (1991).

    Article  CAS  Google Scholar 

  8. Chen, R.H., Waters, J.C., Salmon, E.D. & Murray, A.W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242– 246 (1996).

    Article  CAS  Google Scholar 

  9. Chen, R.H., Shevchenko, A., Mann, M. & Murray, A.W. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol. 143, 283–295 ( 1998).

    Article  CAS  Google Scholar 

  10. Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246 –248 (1996).

    Article  CAS  Google Scholar 

  11. Taylor, S.S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89, 727–735 (1997).

    Article  CAS  Google Scholar 

  12. Taylor, S.S., Ha, E. & McKeon, F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol. 142, 1–11 (1998).

    Article  CAS  Google Scholar 

  13. Jin, D.-Y., Spencer, F. & Jeang, K.-T. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93, 81–91 (1998).

    Article  CAS  Google Scholar 

  14. Farr, K.A. & Hoyt, M.A. Bub1p kinase activates the Saccharomyces cerevisiae spindle assembly checkpoint. Mol. Cell Biol. 18, 2738–2747 (1998).

    Article  CAS  Google Scholar 

  15. Hardwick, K.G. & Murray, A.W. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J. Cell Biol. 131, 709–720 (1995).

    Article  CAS  Google Scholar 

  16. Cuif, M.H. et al. Characterization of GAPCenA, a GTPase activating protein for rab6, part of which associates with the centrosome. EMBO J. 18, 1772–1782 (1999).

    Article  CAS  Google Scholar 

  17. Alexandru, G., Zachariae, W., Schleiffer, A. & Nasmyth, K. Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J. 18, 2707–2721 (1999).

    Article  CAS  Google Scholar 

  18. Li, R. Bifurcation of the mitotic checkpoint pathway in budding yeast. Proc. Natl. Acad. Sci. U. S. A. 96, 4989–4994 (1999).

    Article  CAS  Google Scholar 

  19. Fang, G., Yu, H. & Kirschner, M.W. Direct binding of CDC20 protein family members activates the anaphase- promoting complex in mitosis and G1. Mol. Cell 2, 163–171 (1998).

    Article  CAS  Google Scholar 

  20. Kim, S.H., Lin, D.P., Matsumoto, S., Kitazono, A. & Matsumoto, T. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279, 1045– 1047 (1998).

    Article  CAS  Google Scholar 

  21. Hwang, L.H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 279, 1041–1044 ( 1998).

    Article  CAS  Google Scholar 

  22. Fang, G., Yu, H. & Kirschner, M.W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871 –1883 (1998).

    Article  CAS  Google Scholar 

  23. Clore, G.M. & Gronenborn, A.M. Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol. 16, 22–34 ( 1998).

    Article  CAS  Google Scholar 

  24. Brünger, A.T. X-PLOR Version 3.1 (Yale University Press, New Haven, CT, 1993).

    Google Scholar 

  25. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  26. Aravind, L. & Koonin, E.V. The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem. Sci. 23, 284–286 (1998).

    Article  CAS  Google Scholar 

  27. Chen, R.H., Brady, D.M., Smith, D., Murray, A.W. & Hardwick, K.G. The spindle checkpoint of budding yeast depends on a tight complex between the mad1 and mad2 proteins. Mol. Biol. Cell 10, 2607–2618 ( 1999).

    Article  CAS  Google Scholar 

  28. Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. & Kay, L.E. A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11655–11666 ( 1994).

    Article  CAS  Google Scholar 

  29. Matsuo, H., Li, H. & Wagner, G. A sensitive HN(CA)CO experiment for deuterated proteins. J. Magn. Reson. B 110, 112–115 ( 1996).

    Article  CAS  Google Scholar 

  30. Matsuo, H., Kupce, E., Li, H. & Wagner, G. Increased sensitivity in HNCA and HN(CO)CA experiments by selective Cβ decoupling. J. Magn. Reson. B 113, 91–96 (1996).

    Article  CAS  Google Scholar 

  31. Kay, L.E., Xu, G.-Y., Singer, A.U., Muhandiram, D.R. & Forman-Kay, J.D. A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlations in H 2O samples of proteins. J. Magn. Reson. B 101 , 333–337 (1993).

    Article  CAS  Google Scholar 

  32. Matsuo, H., Kupce, E. & Wagner, G. Resolution and sensitivity gain in HCCH-TOCSY experiments by homonuclear Cβ decoupling. J. Magn. Reson. B 113, 190–194 (1996).

    Article  CAS  Google Scholar 

  33. Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotopic mixing of 13C magnetization. J. Magn. Reson. B 101, 114–119 (1993).

    Article  CAS  Google Scholar 

  34. Lyons, B.A. & Montelione, G.T. A n HCCNH triple-resonance experiment using carbon-13 isotropic mixing for correlating backbone amide and side-chain aliphatic resonances in isotopically enriched proteins. J. Magn. Reson. B 101, 206–209 (1993).

    Article  CAS  Google Scholar 

  35. Lin, Y. & Wagner, G. Efficient side chain and backbone assignments in large proteins. J. Biomol. NMR 15, 227–239 (1999).

    Article  CAS  Google Scholar 

  36. Szyperski, T., Neri, D., Leiting, B., Otting, G. & Wuthrich, K. Support of 1H NMR assignments in proteins by biosynthetically directed fractional 13C-labeling. J. Biomol. NMR 2, 323–334 ( 1992).

    Article  CAS  Google Scholar 

  37. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51– 55 (1996).

    Article  CAS  Google Scholar 

  38. Nicholls, A., Sharp, K.A. & Honig, B. Protein Folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Rizo for assistance with NMR data acquisition and critical reading of the manuscript. X.L. is the recipient of a postdoctoral fellowship from the National Cancer Institute. G.F. is supported by the Burroughs Wellcome Fund Career Award in the Biomedical Sciences. H.Y. is the Michael Rosenberg Scholar in Biomedical Research and a Damon Runyon Scholar. This work is supported in part by the Damon Runyon Foundation and the Robert A. Welch Foundation (to H.Y.) and the National Institutes of Health (to G.W. and M.W.K.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongtao Yu or Gerhard Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, X., Fang, G., Coldiron, M. et al. Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nat Struct Mol Biol 7, 224–229 (2000). https://doi.org/10.1038/73338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing