Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1

Abstract

Haematopoietic development is regulated by nuclear protein complexes that coordinate lineage-specific patterns of gene expression. Targeted mutagenesis in embryonic stem cells and mice has revealed roles for the X-linked gene Gata1 in erythrocyte and megakaryocyte differentiation1,2,3,4. GATA-1 is the founding member of a family of DNA-binding proteins that recognize the motif WGATAR through a conserved multifunctional domain consisting of two C4-type zinc fingers5,6,7,8. Here we describe a family with X-linked dyserythropoietic anaemia and thrombocytopenia due to a substitution of methionine for valine at amino acid 205 of GATA-1. This highly conserved valine is necessary for interaction of the amino-terminal zinc finger of GATA-1 with its essential cofactor, FOG-1 (for friend of GATA-1; refs9,10,11,12). We show that the V205M mutation abrogates the interaction between Gata-1 and Fog-1, inhibiting the ability of Gata-1 to rescue erythroid differentiation in an erythroid cell line deficient for Gata-1 (G1E). Our findings underscore the importance of FOG-1:Gata-1 associations in both megakaryocyte and erythroid development, and suggest that other X-linked anaemias or thrombocytopenias may be caused by defects in GATA1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peripheral blood and bone marrow abnormalities in patients II-1 and II-2.
Figure 2: Ultrastructural abnormalities in megakaryocytes and platelets revealed by electron microscopy.
Figure 3: Mutational analysis of GATA1 in the affected pedigree.
Figure 4: Biochemical characterization of mutant V205M Gata-1.
Figure 5: Impaired function of V205M mutant Gata-1 in erythroid cells.

Similar content being viewed by others

References

  1. Pevny, L. et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349, 257–260 (1991).

    Article  CAS  Google Scholar 

  2. Weiss, M.J., Keller, G. & Orkin, S.H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells . Genes Dev. 8, 1184–1197 (1994).

    Article  CAS  Google Scholar 

  3. Fujiwara, Y., Browne, C.P., Cunniff, K., Goff, S.C. & Orkin, S.H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl Acad. Sci. USA 93, 12355– 12358 (1996).

    Article  CAS  Google Scholar 

  4. Shivdasani, R.A., Fujiwara, Y., McDevitt, M.A. & Orkin, S.H. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 16, 3965–3973 ( 1997).

    Article  CAS  Google Scholar 

  5. Tsai, S.F. et al. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 339, 446–451 (1989).

    Article  CAS  Google Scholar 

  6. Evans, T. & Felsenfeld, G. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 58, 877–885 (1989).

    Article  CAS  Google Scholar 

  7. Orkin, S.H. GATA-binding transcription factors in hematopoietic cells. Blood 80, 575–581 ( 1992).

    CAS  PubMed  Google Scholar 

  8. Weiss, M.J. & Orkin, S.H. GATA transcription factors: key regulators of hematopoiesis. Exp. Hematol. 23, 99–107 (1995).

    CAS  Google Scholar 

  9. Tsang, A.P. et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation . Cell 90, 109–119 (1997).

    Article  CAS  Google Scholar 

  10. Tsang, A.P., Fujiwara, Y., Hom, D.B. & Orkin, S.H. Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev. 12, 1176– 1188 (1998).

    Article  CAS  Google Scholar 

  11. Fox, A.H., Kowalski, K., King, G.F., Mackay, J.P. & Crossley, M. Key residues characteristic of GATA N-fingers are recognized by FOG. J. Biol. Chem. 273, 33595– 33603 (1998).

    Article  CAS  Google Scholar 

  12. Crispino, J.D., Lodish, M.B., MacKay, J.P. & Orkin, S.H. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol. Cell 3, 219–228 (1999).

    Article  CAS  Google Scholar 

  13. White, J.G. Use of the electron microscope for diagnosis of platelet disorders. Semin. Thromb. Hemost. 24, 163–168 (1998).

    Article  CAS  Google Scholar 

  14. McDevitt, M.A., Shivdasani, R.A., Fujiwara, Y., Yang, H. & Orkin, S.H. A “knockdown” mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc. Natl Acad. Sci. USA 94, 6781–6785 (1997).

    Article  CAS  Google Scholar 

  15. Vyas, P., Ault, K., Jackson, C.W., Orkin, S.H. & Shivdasani, R.A. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 93, 2867– 2875 (1999).

    CAS  PubMed  Google Scholar 

  16. Kowalski, K., Czolij, R., King, G.F., Crossley, M. & Mackay, J.P. The solution structure of the N-terminal zinc finger of GATA-1 reveals a specific binding face for the transcriptional co-factor FOG. J. Biomol. NMR 13, 249– 262 (1999).

    Article  CAS  Google Scholar 

  17. Fox, A.H. et al. Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J. 18, 2812–2822 (1999).

    Article  CAS  Google Scholar 

  18. Martin, D.I.K. & Orkin, S.H. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev. 4, 1886–1898 (1990).

    Article  CAS  Google Scholar 

  19. Yang, H.-Y. & Evans, T. Distinct roles for the two cGATA-1 fingers. Mol. Cell. Biol. 12, 4562– 4570 (1992).

    Article  CAS  Google Scholar 

  20. Trainor, C.D. et al. A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol. Cell. Biol. 16, 2238– 2247 (1996).

    Article  CAS  Google Scholar 

  21. Gregory, T. et al. GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 94, 87–96 (1999).

    CAS  PubMed  Google Scholar 

  22. Weiss, M.J. & Orkin, S.H. Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc. Natl Acad. Sci. USA 92, 9623– 9627 (1995).

    Article  CAS  Google Scholar 

  23. Yomogida, K. et al. Developmental stage- and spermatogenic cycle-specific expression of the transcription factor GATA-1 in mouse Sertoli cells. Development 120, 1759–1766 ( 1994).

    CAS  PubMed  Google Scholar 

  24. Viger, R.S., Mertineit, C., Trasler, J.M. & Nemer, M. Transcription factor GATA-4 is expressed in a sexually dimorphic pattern during mouse gonadal development and is a potent activator of the Mullerian inhibiting substance promoter. Development 125, 2665 –2675 (1998).

    CAS  PubMed  Google Scholar 

  25. Hutson, J.M., Baker, M., Terada, M., Zhou, B. & Paxton, G. Hormonal control of testicular descent and the cause of cryptorchidism. Reprod. Fertil. Dev. 6, 151–156 (1994).

    Article  CAS  Google Scholar 

  26. Thompson, A.R., Wood, W.G. & Stamatoyannopoulos, G. X-linked syndrome of platelet dysfunction, thrombocytopenia, and imbalanced globin chain synthesis with hemolysis. Blood 50, 303–316 (1977).

    CAS  PubMed  Google Scholar 

  27. Weiss, M.J., Yu, C. & Orkin, S.H. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol. Cell. Biol. 17, 1642–1651 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Fujiwara, E. Neufeld and S. McKenzie for helpful insights and discussions; D. Haber for assistance with DNA sequencing and review of the manuscript; and J. Mackay and M. Crossley for insightful discussions and providing data on the three-dimensional structure of the GATA-1 N-terminal zinc finger. This work was supported in part by NIH grants AI K11AI01331-05 (K.E.N.), R01 CA78545 (J.M.M.) and HL40387 (M.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell J. Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, K., Crispino, J., Poncz, M. et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet 24, 266–270 (2000). https://doi.org/10.1038/73480

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73480

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing